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Contribution:

»We semantically segment the scene and apply the
background features to localize the query image;

»We propose a framework to train local CNN matching
features through transfer learning, which is applied
with ORB features in the localization process,;

»Based on feature depth, we select accurately
matched features to estimate the vehicle motion and
eliminate the influence of depth when counting the
matching inliers

Guoyu Lu*, Xue-luan Wong**

Overview:

» Sematic segmentation to select the stable features in the
background to build map and online query.

» In the online localization stage, we search feature
correspondences based on K-D tree in a local region as the
previous frame.

» We train deep neural network features to build
correspondences between query image and map.
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» We extract ORB and deep features to localize the query image

and switch features based on the motion of camera.

» Count the inliers based on projection error normalized by depth.

» Camera poses are estimated by correspondences based on
PnP

Chester F. Carlson
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Feature selection:
» Moving objects result in inaccurate camera pose
estimation.

» We design a CNN to segment the image into multiple
components and understand the scene semantically.

» The segmentation CNN follows a encoder-decoder
network with connections in between.

» The features in the background will be maintained during
map building by SLAM and image query.

Decoder

Encoder

Building feature correspondences:

» Embed the map points and features in a K-D tree.

» Use the previous frame position to define the search
region.

» Search correspondences within the local branch of K-D
tree.

CNN feature for matching:
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Feature switching:

» We apply both ORB and deep CNN feature to match with the map features,
which includes both ORB and CNN features.

» When the camera main motion is translation, ORB feature is applied to build
correspondences fast.

» When the camera motion is mainly rotation, we use CNN features to match with
the map to deal with the large scene change more accurately.

Inlier identification:

» Use RANSAC to identify 2D-3D matching inliers

» Distant points usually have small transformation error for RANSAC and close
points usually have big error.

» Multiply the error with depth to remove the affect of depth to back-projection
error.

» Maintain the matching correspondences with small normalized error and
remove those with big error.

tanh

=
tanh — m—
"

C3:3*3*128

- | G3: 3" 3128

S2:4*4%64 S22 4*4%64 S2° 4*4%64

S27 4464

weight

=3

S1:2%2*32 S51:2%2*32

— g1 2%2*32 51 2*2%32

Input: 64*64 Input: 64*64
Internet data

descriptors as training samples.

» Positive samples are generated from the patches that
correspond to the 3D points from SfM after global bundle
adjustment.

by RANSAC or bundle adjustment, which finally do not
generate 3D points.

objective is to reduce the following loss.
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layers to the objective autonomous driving data.

» ldentify the positive feature descriptors and negative feature

» Negative samples are the patches initially match, but filtered

» We apply Siamese network to learn feature extractor. The

» We learn on multiple large datasets and transfer the early

Experiments:
Segmentation:
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Mask: features from
white region are kept
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Position and altitude error by ORB and CNN features:

RMS error in position (m) | Variance for position RMS error in attitude (rad) | Variance for attitude Translation Rotation
Performance

X y z X y z X y z X y Z error error (deg/m)
Deep feature | 0.3872 | 0.1734 | 0.3996 | 0.1846 | 0.0222 | 0.1043 | 0.0073 | 0.0093 | 0.0081 | 0.000018 | 0.000035 | 0.000020 | 0.30% 6.63e-3
ORB 0.6338 | 0.1476 | 0.4161 | 0.1953 | 0.0219 | 0.1069 | 0.0087 | 0.0101 | 0.0091 | 0.000032 | 0.000064 | 0.000035 | 0.34% 2.30e-4

Localization (position and altitude error) compared with other methods:
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Our method Probabilitistic Probabilitistic Global co- Randomized 2D-to-3D Our method Probabilitistic Probabilitistic GI bal c Randomized 2D-to-3D
model model visibility tree with m ode I mode I bltvyr t wth
(stereo) (Monocu lar) binary search . (stereo) (Monocular

Position error

Altitude error (degree)

Position error (m)

PoseMNet

Altltude error

Probabilistic model (stereo and monocular): “Map-based probabilistic visual self-localization”, TPAMI 2016
Global co-visibility:"Efficient global 2D-3D matching for camera localization in a large-scale 3D map”, ICCV,
2017

Randomized tree: Fast localization in large-scale environments using supervised indexing of binary features,”
TIP, 2016

2D-to-3D: Efficient & effective prioritized matching for large-scale image-based localization,” TPAMI, 2017
PoseNet: “Geometric loss functions for camera pose regression with deep learning”, CVPR, 2017
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