CONCEPT-AWARE AUTOMATIC OCCLUSION REMOVAL
Kumara Kahatapitiya, Dumindu Tissera, Ranga Rodrigo
k.kahatapitiy@cs.stonybrook.edu, dumindutissera@gmail.com, ranga@uom.lk
University of Moratuwa, Sri Lanka

MOTIVATION

- Existing image enhancement techniques for occlusion removal:
 - Domain-specific. Eg: shadow removal, image de-raining
 - Require manual annotation.
- No work tries to capture occlusions based on image-context.

CHALLENGES

- How to capture image-context in a generic domain?
 - Highly varying and complex.
 - Subjective in human perception, required to be captured objectively.
- How to evaluate?
 - No baseline.
 - No dataset annotating image-context and respective occlusions.

PROBLEM FORMULATION

- Making intelligent decisions:
 - Identifying image-context based on background and foreground objects.
 - Detecting objects not related to image-context as occlusions.
- Producing a visually-pleasing output:
 - Replacing the pixels related to occlusions coherently.

SYSTEM ARCHITECTURE

- Foreground Segmentator - foreground segmentations.
- Background Extractor - background class labels.
- Relation Predictor - image captions.
- Inpainter - images and random masks.
- Original corpus vs Modified corpus of image captions for Relation Predictor.
- Random masks for Inpainter.
- Data used for training sub-networks:
 - Foreground Segmentator.
 - Background Extractor.
 - Relation Predictor.

IMPLEMETNATION

- Combining sub-networks aggregate errors.
- We evaluate:
 - What is removed?
 - How good is the reconstructed image?
- Direct evaluation of end-to-end system is impossible:
 - Dataset has no annotations on image context or occlusions.
 - Dataset has no image-pairs with and without occlusions.

RESULTS

- Effectiveness of Word-Embeddings

- User Study

- Visually-Pleasing nature

CONCLUSION

- Although our approach learns meaningful relationships between object classes and utilizes hand-designed algorithms to decide on occlusions, how humans perceive it can be different.
- We establish a baseline for context-aware automatic occlusion removal in a generic domain, even with the lack of a relation-based dataset.
- As future work, we hope to develop a dataset that captures human annotations on object relations, which will enable end-to-end training of such networks.