AUTOMATIC NEURAL NETWORK SEARCH METHOD FOR OPEN SET RECOGNITION

Li Sun¹, Xiaoyi Yu¹, Liuan Wang¹, Jun Sun¹, Hiroya Inakoshiy², Ken Kobayashiy², Hiromichi Kobashiy²
¹Fujitsu R&D Center, Beijing, China; ²Fujitsu Laboratories Ltd., Kawasaki, Japan

INTRODUCTION
Real-world recognition or classification tasks in computer vision are not apparent in controlled environments and often get involved in open set. Previous research work on real-world recognition problem is knowledge- and labor-intensive to pursue good performance for there are numbers of task domains. Auto Machine Learning (AutoML) approaches supply an easier way to apply advanced machine learning technologies, reduce the demand for experienced human experts and improve classification performance on close set. This paper proposes an automatic neural network search method for designing effective convolution neural network (CNN) models for open set recognition (OSR). Feature distribution information is explicitly incorporated into the main objective. So during the search process, the sampled models will enlarge inter-class differences and reduce intra-class variations. We design a flexible search base on classic CNN models to diversify neural architectures and also add some search principles to limit the size of the search space. Experimental results on CIFAR-10 and Dunhuang historical Chinese datasets show that our approach improves performances on both close and open set. Comparing with the other two OSR algorithms, our method also achieves the best performance.

INNOVATIONS

- **Optimization objective**
 - Both close set accuracy and feature distribution of output features are under consideration
 - The feature distribution is scored by Euclidean distances. We want to find the model which can obtain separable inter-class differences and compact
- **Flexible search space, limited sample principles**
 - We design a flexible search space based on classic CNN models to explore as much as possible architectures for OSR.
 - We add some empirical principles to limit search space size and improve search efficiency.

METHOD

- **Formulate optimization objective**
 - We formulate the optimization objective of two parts, close set accuracy and feature distribution information. Our purpose is to find the model achieving separable inter-class differences and compact intra-class variations.
 \[\text{Reward} = \text{ACC} \times \text{FDS} \]
 \[\text{FDS} = \frac{1}{1 + \text{L}} + 1 \]

- **Search strategy**
 - FDS: Feature distribution score
 - We employ a gradient-based reinforcement learning approach to find optimal objective.

- **Search space**
 - Operations: Max pool, Avg pool, Sep 3x3, Sep 5x5
 - Conv 3x3, Conv 5x5

- **Open set recognition**
 - During the open set recognition process, we use the minimum Euclidean distance between this sample’s feature vector and each known-class center
 \[d = \min(D(v, C_i)), i = 1, 2, ..., K, C_i \text{ is the } i\text{th} \text{ class center and there are total } K \text{ known classes} \]

EXPERIMENTS

- **Performance on CIFAR-10 dataset**
 - Table 1: Experiment setting of CIFAR dataset
 - Table 2: Close set classification results on CIFAR-5 dataset

- **Performance on Dunhuang historical Chinese dataset**
 - Table 3: Experiment setting of Dunhuang dataset
 - Table 4: Close set classification results on Dunhuang-300 dataset