INTRODUCTION & MOTIVATION

Motivation: Recently, CNN-based models have been proposed to improve recovery performance for image compressive sensing. However, 1: Previous methods concentrate on optimize inverse reconstruction part, while neglect optimizing measurement matrix in compressive sample process . 2: Previous methods use simple network architecture to implement reconstruction task, which cannot fully exploit powerful learning ability of CNN.

For above issues, we propose an end-to-end multi-scale residual neural network, dubbed as MSRNet, contributions of our MSRNet are following:

- We apply fully-connected layer as measurement matrix to implement compressively sample task, replacing traditional random Gaussian matrix, which is not so friendly for hardware.
- We integrate compressive sample and inverse reconstruction parts to one end-to-end model, so we actually optimize an end-to-end CNN instead of optimizing each part respectively.
- Multi-scale residual network is introduced to extract different-scale feature information, and cross connection is introduced to fuse information from different-scale level.
- Accuracy and time complexity: our method achieves significant performance improvement on test datasets with competitive time complexity, a test image is shown in Fig.1.

EXPERIMENT RESULTS

- Table 1 PSNR and time for recovering image "Parrots" at MR=25% and image "peppers" (the bottom picture) at MR=4%.
- Table 2 Time complexity of different algorithms.

PROPOSED METHOD

- As is shown in Fig.2, MSRNet includes three parts: compressive sample, initial reconstruction, multi-scale residual reconstruction.
- compressive sample part includes 1 reshape layer and 1 fully-connected layer, which is used for reshape input image patch and compressive sample original pixels.
- initial reconstruction part includes 1 reshape layer and 1 fully-connected layer, which is used for initially restore original pixels and reshape to one patch.
- multi-scale residual reconstruction part is used to further enhance recovery accuracy based on initial reconstruction image, the basic block in the part is MSRB, whose detail is shown in Fig.3.

CONCLUSION

In this paper, we proposed an end-to-end multi-scale residual network for image compressive sensing. By training a CNN based on end-to-end optimization, difficulty of generating hardware-friendly measurement matrix is alleviated. Moreover, multi-scale residual is introduced to enhance learning ability for multi-scale information and contribute to achieve better reconstruction quality.