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Introduction

1. Motivation
a. A reasoning model needs predicting actions based on human drivers performance.

b. Attention saliency is required to improve the models on predicting the behaviors based on the 

correct reasons.

2. Video Recognition of Driving behavior
a. Causal reasoning

b. Spatial-temporal reasoning

3. Visual Explanation
a. Filtering complex traffic information by attention saliency

b. Recognizing actual cause of action
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Robust Self-Driving System Architecture
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Contributions

● The investigation of state-of-the-art 3D CNNs on the recognition of driving 

behaviors based on causal reasoning

● The introduction of the Temporal Reasoning Block (TRB) for improving the 

state-of-the-art models on classifying reasoning-based driving behaviors

● The proposition of a perturbation-based visual explanation method for spatial-

temporal models, which enables the inspection of self-driving models
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Related Work

● Self-Driving Behavior Recognition
○ As self-driving technology demonstrated incredible performance in both urban and off-road 

scenarios [1], the reasoning of self-driving behavior became a needed research problem

○ Prior efforts [2, 3, 4] formulate the behavior as a goal-oriented task, which is not sufficient to 

learn how humans drive and interact with traffic scenes

○ Driving behavior understanding could be performed by video recognition approaches: CRNN 

[5], C3D [6], I3D [7], 3DResNet [8]
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Related Work

● Attention Models
○ Attention mechanisms have become a reliable method to capture global dependencies [9, 10]. 

Self-attention [11] represents the importance of different positions in a sequence

○ While self-attention has been applied to actions recognition tasks in video [12], the potential of 

self-attention have not been explored on the reasoning tasks of driving behaviors

● Visual Explanation of CNNs
○ Some explanation methods require accessing intermediate layers [13, 14] and/or architectural 

modification [15] of the CNNs

○ Other methods perform explanation by perturbing the input images [16, 17], which can be 

used on any kind of the model

7



Methodology

Non-local network

1. Inspired by non local neural network [12], we captured long-range 

dependencies to observe the cause of action through space-time features.
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Non-Local block

Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the 

IEEE conference on computer vision and pattern recognition. 2018.



Methodology

Self Attention Mechanism

9Zhang, Han, et al. "Self-attention generative adversarial networks." arXiv 

preprint arXiv:1805.08318 (2018).



Methodology
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Temporal Reasoning Block (TRB)



Methodology

Temporal Reasoning Block (TRB)

1. 1 x 1 3D Convolution for fine grinded features

2. Temporal-aware self-attention map
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1. Attention map for every frame

2. Dot product of spatial feature 

and attention map

3. Stack along with time

4. Gamma will be learnable parameter



Methodology

Perturbation-based Visual Explanation for Self-Driving Models

Based on [17], the explanation was done by finding the regions to perturb the original image which makes 

the classifier model to produce a minimal score on the target class. The example is as follows:
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Ruth C Fong and Andrea Vedaldi, “Interpretable explanations of black 

boxes by meaningful perturbation,” in Proceedings of the IEEE 

International Conference on Computer Vision, 2017, pp. 3429–3437.



Methodology

Defining perturbation mask for single frame

To minimize the classification score of single frame, objective function: 

Objective function expanding to both spatial and temporal dimensions
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Dataset

Honda Research Institute Driving Dataset (HDD) [18]

● Video clips with annotations of  Stimulus-driven Action and Cause
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Results - Driving Behavior Recognition

● The self-attention mechanism in TRB effectively helped the models to capture 

the global dependency within the videos.

● Also, TRB can be flexibly applied to different models of driving behavior 

recognition to provide improvement
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Results - Attention Saliency of Driving Behaviors
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Results - Attention Saliency of Driving Behaviors
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Results - Attention Saliency of Driving Behaviors
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Conclusions

● We proposed the Temporal Reasoning Block (TRB) to improve the 

performance of video recognition models on reasoning driving behaviors

● The TRB largely improved the performance of CRNN and 3D CNNs and we 

achieved the highest accuracy of 86.3% using the 3DResnet-TRB model

● The attention saliency, generated by the proposed perturbation-based visual 

explanation method, demonstrated that 3DResnet-TRB was able to focus on 

reasonable objects when classifying driving behaviors
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