Image Steganography
based on Iterative Adversarial perturbations
onto A Synchronized-directions Sub-image

Xinghong Qin, Shunquan Tan, Weixuan Tang,
Bin Li and Jiwu Huang

Shenzhen University
Introduction

- Steganography and steganalysis are a pair of antagonistic players.
 - Steganography:
 - Steganography is trying to escape being detected by steganalysis.
 - Steganalysis:
 - The warden discriminates whether a cover or a stego object is sent.

- Scenario
 - The sender slightly modifies the cover C to conceal the secret message M to produce the stego S.
 - Send S to the receiver through the channel with passive the warden.
 - The receiver extracts M from the received S.
 - If the warden classifies the sent object is a stego, he maybe block-up the transmission or damage the sent object.
Introduction

• Steganography has to face challenges of both feature-based steganalysis and CNN steganalysis.
Introduction

• **Motivation.**

 – Incorporate **SMD strategy and adversarial examples** to further enhance steganographic security to counter both feature-based steganalysis and CNN steganalysis.

 • Synchronizing modification directions (SMD) strategy can improve steganographic security.

\[
D(X, Y) = \sum_{(i,j), (k,l) \in \mathcal{C}} S_C(X_{ij} - Y_{ij}, X_{kl} - Y_{kl})
\]

(1)

• Many machine learning classifiers are vulnerable to adversarial examples.

\[
X_{adv} = X + \epsilon \cdot \text{sign}(\nabla_X \mathcal{L}(\Phi(X), y_t))
\]

(2)

ITE-SYN: Xinghong Qin, Shunquan Tan, Weixuan Tang, Bin Li and Jiwu Huang. IEEE ICASSP 2021
Our Method

- Base framework
 - ITE-SYN: \textit{ITE}ratively apply adversarial perturbations onto one \textit{SYN}chronized modification directions sub-image.

\begin{itemize}
 \item ITE-SYN
 \begin{itemize}
 \item Embed secret message with synchronizing modification directions
 \item Iteratively apply adversarial perturbations onto one sub-image
 \end{itemize}
\end{itemize}
Our Method

- Embed secret message with synchronizing modification directions
 - Implement clustering modification directions (CMD) strategy.
 - The initial costs ξ are only computed once.
 - Adjust costs as
 \[
 \begin{align*}
 \rho_{+}^{(i,j)} &= \frac{\xi_{+}^{(i,j)}}{\beta} & & \text{if} & \sum_{\Delta e^{(r,s)} \in N^{(i,j)}} \Delta e^{(r,s)} > 0, \\
 \rho_{-}^{(i,j)} &= \frac{\xi_{-}^{(i,j)}}{\beta} & & \text{if} & \sum_{\Delta e^{(r,s)} \in N^{(i,j)}} \Delta e^{(r,s)} < 0, \\
 \rho_{\pm}^{(i,j)} &= \xi_{\pm}^{(i,j)} & & \text{otherwise},
 \end{align*}
 \]
 where $N^{(i,j)} = \{\Delta e^{(r,s)} | r \in \{i - 1, i + 1\}, s \in \{j - 1, j + 1\}\}$
 \[\Delta C = S - C\]
 - Select $\beta = 10$ for images with size-scale 256×256.
Our Method

• Iteratively apply adversarial perturbations.
 – We re-embed image to produce adversarial perturbations.
 \[
 \Delta C' = Z - C = (Z - S) + (S - C) = n + \Delta C,
 \]
 – Adversarial costs are computed from embedding costs \(\rho \) adjusted by SMD.
 \[
 \rho^{(i,j)}_{adv+} = \begin{cases}
 \rho^{(i,j)}_+ (1 + \gamma) & \text{if } \nabla \mathcal{L}^{(i,j)}(S, y_c) > 0, \\
 \rho^{(i,j)}_+ / (1 + \gamma) & \text{if } \nabla \mathcal{L}^{(i,j)}(S, y_c) < 0, \\
 \rho^{(i,j)}_+ & \text{otherwise}
 \end{cases}
 \]
 \[
 \rho^{(i,j)}_{adv-} = \begin{cases}
 \rho^{(i,j)}_- (1 + \gamma) & \text{if } \nabla \mathcal{L}^{(i,j)}(S, y_c) < 0, \\
 \rho^{(i,j)}_- / (1 + \gamma) & \text{if } \nabla \mathcal{L}^{(i,j)}(S, y_c) > 0, \\
 \rho^{(i,j)}_- & \text{otherwise}
 \end{cases}
 \]

 – Parameters
 \[
 \Delta \gamma = 0.1, \\
 \gamma_{max} = 10.
 \]
Our Method

- Iteratively apply adversarial perturbations.
 - Adversarial perturbations are **only** applied onto one sub-image.
 - If re-embedding one sub-image is failed to deceive the target CNN classifier, the next sub-image will be selected to be re-embedded until all sub-images are tried re-embedding.
Experiments

• Setup
 – Image database: BOSS256
 • Union of BOSSBase v1.01 and BOWS2. Totally 20000 images.
 • Resize each image from size-scale 512X512 to 256X256 by Matlab.
 • For CNN, 1000 images and 5000 images randomly selected from BOSSBase for validation and testing, other 14000 images are for training.
 – Cost functions
 • Heuristic method: HILL.
 • Model-based method: MiPOD.
 – Steganalysis
 • CNN classifiers
 – The target: XuNet, YeNet.
 – The non-target: SRNet.
 • Ensemble classifiers: SRM, maxSRMd2, PDASS.

• Comparison schemes
 • ADV-EMB
 • MinMax + ADV-EMB.

• Payload rates
 • 0.2 bpp and 0.4 bpp

• Performance
 \[P_E = \frac{P_{FA} + P_{MD}}{2} \]

• Stegos are created by the simulator unless specified.
Experiments

- Deceiving original classifiers
 - Notations
 - BAS: baseline.
 - ADV: ADV-EMB.
 - ITE: ITE-SYN.
 - M1-M9: versions of MinMax+ADV-EMB.
 - Target CNN classifier
 - XuNet: (a)-(b)
 - YeNet: (c)-(d)

- Conclusion
 - ITE-SYN can effectively deceive the target CNN classifiers.
 - ITE-SYN improve steganographic performances to counter other original classifiers.
Experiments

- Countering adversarial training classifiers
 - ITE-SYN outperforms ADV-EMB.
 - For comparison with MinMax+ADV-EMB,
 - ITE-SYN performs superior for non-target CNN classifiers and feature-based classifiers.
 - ITE-SYN performs superior when countering YeNet classifiers.
 - MinMax+ADV-EMB outperforms ITE-SYN after the fourth round when countering XuNet classifier.

- Discussion
 - Computational complexity of ITE-SYN is lower than of MinMax+ADV-EMB.
 - ITE-SYN creates only one stego image for each cover image.
 - It is predicted that steganographic performances of MinMax+ITE-SYN should be further improved.
Appendix: Issues

• Performances of MinMax+ITE-SYN
 – Notations
 • BAS: baseline.
 • M0-M9: rounds of MinMax.
 – Conclusion
 • MinMax+ITE-SYN outperforms MinMax+ADV-EMB.

Performances of countering adversarial training classifiers.

ITE-SYN: Xinghong Qin, Shunquan Tan, Weixuan Tang, Bin Li and Jiwu Huang. IEEE ICASSP 2021
Experiments

- **Computational time (STCs)**
 - Success rates are over 90%.
 - ITE-SYN can effectively deceive the target CNN classifiers.
 - Maximal iteration
 - ADV-EMB: 10.
 - ITE-SYN: 400.
 - Average computational times of ITE-SYN are less than of ADV-EMB, except for ITE-SYN for XuNet with payload rate 0.2 bpp.
 - Success rate of ITE-SYN is less about 5%.
- **Cumulative success rate**
 \[P_\gamma(x_0) = \int_{-\infty}^{x_0} f(t) dt \]
 - When \(\gamma_{\text{max}} = 1 \)
 - cumulative success rates are over 80%,
 - the maximal iteration of ITE-SYN: 40,
 - average time of creating adversarial stego image by ITE-SYN for XuNet as the target CNN classifiers with payload rate 0.2 bpp is 7.38 seconds.

Table: Average success rate and computational time

<table>
<thead>
<tr>
<th>Target</th>
<th>Scheme</th>
<th>0.2 bpp</th>
<th>0.4 bpp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Success rate</td>
<td>Time</td>
</tr>
<tr>
<td>XuNet</td>
<td>ADV-EMB</td>
<td>95.76</td>
<td>10.40</td>
</tr>
<tr>
<td></td>
<td>ITE-SYN</td>
<td>90.79</td>
<td>24.19</td>
</tr>
<tr>
<td>YeNet</td>
<td>ADV-EMB</td>
<td>99.82</td>
<td>6.68</td>
</tr>
<tr>
<td></td>
<td>ITE-SYN</td>
<td>98.95</td>
<td>6.66</td>
</tr>
</tbody>
</table>

- **Conclusion**
 - Computational complexity of ITE-SYN is lower.

ITE-SYN: Xinghong Qin, Shunquan Tan, Weixuan Tang, Bin Li and Jiwu Huang. IEEE ICASSP 2021
Conclusion

• ITE-SYN further enhances steganographic security countering both feature-based steganalysis and CNN steganalysis.
 – ITE-SYN can effectively deceive the target CNN classifiers, and can effectively resist on detection of other original classifiers, including both feature-base classifiers and CNN classifiers.
 – ITE-SYN has significant undetectability to counter adversarial training classifiers, including both feature-based classifiers and CNN classifiers.
 – Gradually increased adversarial perturbations are only applied onto one clustering modification directions sub-image.
 • It spends low computational expense.
 • It guarantees that adversarial perturbations applied are minimal.
 • It is unnecessary to search the optimal adversarial intensity.

• Future works
 – Extend the method to JPEG images.
 • Investigate incorporation of adversarial perturbations and effective cost strategy.
 – Investigate inner mechanisms of both SMD strategy and adversarial perturbations to design more powerful steganographic algorithm.
Thanks!