1 - Motivation & Contribution

- In cellular systems, intercell interference is present between close base stations.
- For spreading-based NOMA or OMA, intercell interference causes full collision of the spreading sequences in the code-domain.
- We propose to reduce intercell interference by employing jointly designed codebooks.
- The criterion for the design is to minimize the maximum cross-correlation between the codebooks.

2 - System Model

- For a NOMA system with spreading length \(N \), number of users \(M \), the received signal at the base station is
 \[y = \sum_{m=1}^{M} h_m \sqrt{P_m} s_m + n , \]
 (1)
 where
 \(\quad h_m \in \mathbb{C} \ldots \) transmit symbol,
 \(\quad s_m \in \mathbb{C}^{N \times 1} \ldots \) unit-norm signature,
 \(\quad \sqrt{P_m} \in \mathbb{R}^+ \ldots \) transmit power,
 \(\quad h_m \in \mathbb{C} \ldots \) fading coefficient,
 \(\quad n \in \mathbb{C}^{N \times 1} \ldots \) noise.

- Intercell interference adds extra terms to (1) from the other cells.
- The base stations are unaware of the transmit powers of the interfering users from the interfering cells.
- From the code-domain perspective, the performance depends on the codebook of signatures defined as
 \[S \in \mathbb{C}^{N \times M} = [s_1 \ s_2 \ldots \ s_M] . \]
 (2)

3 - Codebook Design Problem

- Instead of reusing the codebook in each cell, we assign different codebooks that are jointly designed.
- To keep the intracell interference unaffected, the codebooks need to have identical Gramians, i.e.,
 \[S_i^H S_i - S_j^H S_j - \ldots - S_K^H S_K . \]
 (3)
- We attempt to get close to orthogonality according to some metric \(||S_i^H S_j|| \).
- Consider the element-wise maximum norm
 \[||A||_{max} = \max_{i,j} ||A_{i,j}|. \]
 (4)

Applying it to our problem, we obtain
 \[||S_i^H S_j||_{max} = \max_{i,j} ||S_i^H S_j||_{i,j} = \max_{i,j} ||S_i^H S_j||_{i,j} \]
 (5)

This is a robust approach that minimizes the maximum cross-correlation between the codebooks.

4 - Alternating Projection

- Find codebooks \(S_1, S_2, \ldots, S_K \) such that
 \[S_i^H S_i - S_j^H S_j \quad \text{for every } i, \]
 \[||S_i^H S_i||_{max} \leq \mu, \quad \text{for every } i \neq j . \]
 (6)
- Let \(\Sigma = [S_1 \ S_2 \ldots \ S_K] \). The Gramian of the codebooks is given by
 \[G = \Sigma^H \Sigma = \begin{bmatrix} S_1^H S_1 & S_1^H S_2 & \ldots & S_1^H S_K \\ S_2^H S_1 & S_2^H S_2 & \ldots & S_2^H S_K \\ \vdots & \vdots & \ddots & \vdots \\ S_K^H S_1 & S_K^H S_2 & \ldots & S_K^H S_K \end{bmatrix} . \]
 (7)
- The properties of the Gramian matrix \(G \) from (6) can be divided into a structural constraints set
 \[\mathcal{H} = \{ H \in \mathbb{C}^{MK \times MK} : H - H^H, \]
 \[H_{i,i} - S_i^H S_i, \quad ||H_{i,j}||_{max} \leq \mu, \quad \text{for } i \neq j \}, \]
 (8)

and a spectral constraints set
 \[\mathcal{G} = \{ G \in \mathbb{C}^{MK \times MK} : \text{rank}(G) = N, \]
 \[\text{trace}(G) = MK \} \].
 (9)

We use the alternating projection algorithm to find a matrix \(G \) satisfying both constraint sets.
- The algorithm operates by iteratively solving a nearest matrix problem to each constraint set.

5 - Simulation Scenario

- Two cells with spreading length \(N = 8 \), for both NOMA and OMA systems.
- For the NOMA system, a base \(8 \times 24 \) codebook is used. The lowest \(\mu \) found was 0.52.
- For the OMA system, a base \(8 \times 8 \) unitary codebook is used. The lowest \(\mu \) found was 0.3536.
- The SNR of the users in the primary cell is uniformly distributed in \([4, 20] \) dB.
- The SNR of the cell-edge user is fixed to 4 dB.
- The SNR of the users from the interfering cell at the primary base station is uniformly distributed in \([-12, 4] \) dB.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spreading length</td>
<td>8</td>
</tr>
<tr>
<td>Number of users for NOMA</td>
<td>8, 16, 24</td>
</tr>
<tr>
<td>Number of users for OMA</td>
<td>8</td>
</tr>
<tr>
<td>Modulation</td>
<td>4-QAM</td>
</tr>
<tr>
<td>Channel coding</td>
<td>Turbo, code rate 1/3</td>
</tr>
<tr>
<td>Channel model</td>
<td>Flat fading</td>
</tr>
<tr>
<td>Channel estimation</td>
<td>Ideal</td>
</tr>
<tr>
<td>Multiuser Detector</td>
<td>CWL-MMSE-SIC</td>
</tr>
</tbody>
</table>

6 - Cell-Edge Performance

- The figures below show the performance of the cell-edge user for two strategies:
 - Reuse; in which the base codebook is reused in each cell.
 - Joint; in which joint codebooks are used.
- \(A_P \) and \(A_I \) are the number of active users in the primary cell and interfering cell, respectively.

\[\text{Performance of the OMA cell-edge user for } A_P = 8 \quad (100\%), \quad \text{and } A_I = 8 \quad (100\%) . \]

\[\text{Performance of the NOMA cell-edge user for } A_P = 24 \quad (300\%), \quad \text{and } A_I = 8, 16, 24, 100, 200, 300\% . \]

Summary

- We propose a method for reducing intercell interference in NOMA and OMA systems by using jointly designed codebooks.
- The criterion for the codebook design is to minimize the maximum cross-correlation between the codebooks.
- The performance of the cell-edge user is evaluated, in which a considerable gain is obtained.

Acknowledgements

This work has been funded by the Christian Doppler Laboratory for Dependable Wireless Connectivity for the Society in Motion. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged.