

東京工業大学 Tokyo Institute of Technology

A Variable Smoothing for Nonconvexly Constrained Nonsmooth Optimization with Application to Sparse Spectral Clustering

Keita Kume and Isao Yamada, Tokyo Institute of Technology

Summary

Target problem:

$$\begin{array}{ll} \text{Minimize } f(\mathbf{x}) \coloneqq h(\mathbf{x}) + g \circ G(\mathbf{x}) \cdots (\bigstar) \\ \text{constraint} & \text{smooth} & \text{nonsmooth} \end{array}$$

- \mathcal{X}, \mathcal{Z} are Euclidean spaces
- $C(\neq \emptyset) \subset \mathcal{X}$ is a (possibly nonconvex) closed subset of \mathcal{X}
- $h: \mathcal{X} \to \mathbb{R}$: differentiable, ∇h is Lipschitz continuous over *C*
- $g: \mathbb{Z} \to \mathbb{R}$: weakly convex, nonsmooth Lipschitz continuous $\underset{\text{def}}{\Leftrightarrow} \exists \eta > 0 \text{ s. t. } g + \frac{\eta}{2} \| \cdot \|^2 \text{ is convex}$ • $G: \mathcal{X} \to \mathcal{Z}$: smooth (possibly nonlinear) mapping Typical applications: sparsity-aware signal processing, e.g., sparse PCA, sparse spectral clustering, robust subspace recovery

How to deal with nonsmoothness of $g ? \Rightarrow$ smoothing

- Key idea (inspired by [1]) Use a smoothed surrogate function of η -weakly convex g.

Moreau envelope μg of g with $\mu \in (0, \eta^{-1})$ $(\overline{z} \in \mathcal{Z}) \ ^{\mu} g(\overline{z}) \coloneqq \inf_{z \in \mathcal{Z}} \left(g(z) + \frac{1}{2\mu} ||z - \overline{z}||^2 \right)$ $\bullet \lim_{\mu \to 0} {}^{\mu} g(\bar{z}) = g(\bar{z})$

- ${}^{\mu}g$ is differentiable, and $\nabla^{\mu}g$ is Lipschitz continuous

Challenging issues:

nonconvex constraint C nonsmoothness and nonconvexity of g

- Our contributions:
- Proposal of an optimization algorithm of guaranteed global convergence to a stationary point (First available algorithm for (\bigstar) , and generalization of [1]).
- Application to sparse spectral clustering (SSC) based on nonconvex sparse regularizer (Inherently first nonconvex approach for SSC).

How to deal with constraint set $C ? \Rightarrow$ parametrization

- Key idea Parameterize C in terms of the Euclidean space \mathcal{Y} with a smooth mapping $F: \mathcal{Y} \to \mathcal{X}$ such that $C = \{F(\mathbf{y}) \in \mathcal{X} \mid \mathbf{y} \in \mathcal{Y}\}$.

Theorem 3.1 [Characterization of optimality condition] For $(\mu_n)_{n=1}^{\infty} (\subset (0, \eta^{-1})) \xrightarrow[n \to \infty]{} 0$, and $(y_n)_{n=1}^{\infty} \subset \mathcal{Y} \xrightarrow[n \to \infty]{} \exists \overline{y} \in \mathcal{Y}$, $d(\mathbf{0},\partial(f\circ F)(\overline{\mathbf{y}})) \leq \liminf_{n\to\infty} \|\nabla((h+\mu_n g\circ G)\circ F)(\mathbf{y}_n)\|$

> $\liminf_{n\to\infty} \left\| \nabla \big((h + \mu_n g \circ G) \circ F \big) (\mathbf{y}_n) \right\| = 0 \text{ implies}$ $d(\mathbf{0}, \partial (f \circ F)(\overline{\mathbf{y}})) = 0$, i. e., $\mathbf{0} \in \partial (f \circ F)(\overline{\mathbf{y}})$.

Proposed algorithm achieves $\liminf_{n \to \infty} \|\nabla((h + \mu_n g \circ G) \circ F)(y_n)\| = 0$: 1. Set $\mu_n \coloneqq \kappa n^{-\frac{1}{\alpha}}$ and $f_{[n]} \coloneqq h + \mu_n g \circ G \quad (\alpha > 1, \exists \gamma_n > 0, \exists \kappa > 0)$ 2. Update $\mathbf{y}_{n+1} \coloneqq \mathbf{y}_n - \gamma_n \nabla (f_{[n]} \circ F)(\mathbf{y}_n)$ Increment *n*

Theorem 3.3 [Convergence analysis (informal)] Assume that $\nabla(f_{[n]} \circ F)$ is Lipschitz continuous with a Lipschitz constant $\varpi \mu_n^{-1}$ with some $\varpi > 0$, and $\gamma_n > 0$ is computed by the so-called *backtracking algorithm*. Then, $(y_n)_{n=1}^{\infty}$ generated by the proposed algorithm satisfies: $\liminf \|\nabla((h+\mu_n g \circ G) \circ F)(\mathbf{y}_n)\| = 0.$

Example: smoothly parameterizable *C*

- Stiefel manifold $St(p,N) \coloneqq \{ \boldsymbol{U} \in \mathbb{R}^{N \times p} \mid \boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}_p \}$ (with Cayley-type transforms [2,3])
- Bounded-rank matrices $\mathbb{R}^{M \times N}_{\leq r} \coloneqq \{ X \in \mathbb{R}^{M \times N} \mid \operatorname{rank}(X) \leq r \}$ (with the multiplication $X = YZ^T$ $[\mathbf{Y} \in \mathbb{R}^{M \times r}, \mathbf{Z} \in \mathbb{R}^{N \times r}]$ [4]) (stereographic projection [Riemann'1851])

We consider the following parameterized problem instead of (\bigstar) : Minimize $f \circ F(\mathbf{y}) = (h + g \circ G) \circ F(\mathbf{y}) \cdots (\mathbf{\Phi})$ **y**€'*Y* Euclidean space

We have the following relation of necessary conditions (optimality condition) of a local minimizer for (\bigstar) and (\clubsuit) .

Theorem 4.1 [Relations of optimality conditions] $\mathbf{0} \in \partial f(F(\mathbf{y}^{\star})) + N_{\mathcal{C}}(F(\mathbf{y}^{\star})) \Leftrightarrow \mathbf{0} \in \partial (f \circ F)(\mathbf{y}^{\star})$ Application to sparse Spectral Clustering (SC)

Goal: split given data $(\boldsymbol{\xi}_i)_{i=1}^N \subset \mathbb{R}^d$ into K groups without labeled data.

Outline of SC [6]

 $\boldsymbol{D} \in \mathbb{R}^{N \times N}$: degree matrix $W \in \mathbb{R}^{N \times N}$: adjacency matrix 1. Construct a similarity graph \mathcal{G} of $(\boldsymbol{\xi}_i)_{i=1}^{N}$. 2. Compute K smallest eigenvectors $U^* \in St(K, N)$ of the graph Laplacian $L \coloneqq I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}} \in \mathbb{R}^{N \times N}$. 3. Apply k-means algorithm to N row (normalized) vectors of U^* .

(Steps 2 and 3 correspond to splitting *G* into *K* connected subgraphs)

To improve SC, the Sparse SC (SSC) utilizes a prior knowledge that U^*U^{*T} is sparse (block diagonal) in the ideal case [7].

Optimality condition for (\bigstar) Optimality condition for (\clubsuit) under $\begin{cases} \text{the Clarke regularity on } C \text{ (i.e., } C \text{ is sufficiently smooth)} \\ N_C(F(\mathbf{y}^*)) = \left\{ \mathbf{x} \in \mathcal{X} \mid \left(DF(\mathbf{y}^*) \right)^* (\mathbf{x}) = \mathbf{0} \right\} \text{ at } \mathbf{y}^* \in \mathcal{Y} \end{cases}$

Note: these are different senses $\mathfrak{X}\partial f$ denotes the general subdifferential. $N_C(\mathbf{x}) \subset \mathcal{X}$ denotes the general normal cone. from convex analysis (see [5]). $(DF(y))^*$ denotes the adjoint of the Fréchet derivative (Jacobi matrix) at $y \in \mathcal{Y}$.

[1] A. Böhm, S.J. Wright, "Variable smoothing for weakly convex composite functions," J. Optim. Theory Appl., 2021.

- [2] K. Kume, I. Yamada, "A global Cayley parametrization of Stiefel manifold for direct utilization of optimization mechanisms over vector spaces," ICASSP, 2021.
- [3] K. Kume, I. Yamada, "Generalized left-localized Cayley parametrization for optimization with orthogonality constraints," Optimization, 2022.
- [4] E. Levin, J. Kileel, N. Boumal, "The effect of smooth parametrizations on nonconvex optimization landscapes," Math. Program., 2024 [5] R. Rockafellar, R. J.-B. Wets, Variational Analysis, Springer Verlag, 3rd edition, 2010.
- [6] A. Ng, M. Jordan, Y. Weiss, "On spectral clustering: Analysis and an algorithm," NeurIPS, 2001.
- [7] C. Lu, S. Yan, Z. Lin, "Convex sparse spectral clustering: Single-view to multi-view," IEEE Trans. Image Process., 2016. [8] C.-H. Zhang, "Nearly unbiased variable selection under mini- max concave penalty," The Annals of Statistics, 2010.

(\blacklozenge) can be reformulated as (\clubsuit) with $h(U) \coloneqq \text{Tr}(U^T L U)$, $g \coloneqq \lambda \psi$, $G(U) \coloneqq UU^T$ and the generalized Cayley transform [3] $F \coloneqq \Phi_{\mathbf{s}}^{-1}: \mathcal{Y} \to St(p, N): \mathbf{Y} \mapsto \mathbf{S}(\mathbf{I} - \mathbf{Y})(\mathbf{I} + \mathbf{Y})^{-1}\mathbf{I}_{N \times p},$ where $\mathcal{Y} \coloneqq \left\{ \begin{bmatrix} A & -B^T \\ B & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{N \times N} \mid \begin{array}{c} A^T = -A \in \mathbb{R}^{p \times p} \\ B \in \mathbb{R}^{(N-p) \times p} \end{array} \right\}.$

(St(p, N)) and F above satisfy the assumption in Theorem 4.1)

We propose to solve (\blacklozenge) with MCP (Minimax Concave Penalty) [8] as ψ .

Result: the proposed SSC with MCP achieves the best performance!

	iris		shuttle		segmentation		breast cancer		glass		wine		seeds	
	NMI	ARI	NMI	ARI	NMI	ARI	NMI	ARI	NMI	ARI	NMI	ARI	NMI	ARI
SC [6]	0.778	0.745	0.387	0.205	0.501	0.341	0.417	0.419	0.321	0.174	0.433	0.363	0.662	0.659
	(0.000)	(0.000)	(0.043)	(0.059)	(0.043)	(0.056)	(0.000)	(0.000)	(0.026)	(0.019)	(0.000)	(0.000)	(0.007)	(0.010)
SSC(ℓ_1 +relax) [7]	0.785	0.786	0.426	0.279	0.503	0.343	0.433	0.462	0.325	0.176	0.433	0.363	0.671	0.675
	(0.000)	(0.000)	(0.047)	(0.063)	(0.036)	(0.052)	(0.000)	(0.000)	(0.021)	(0.016)	(0.000)	(0.000)	(0.032)	(0.034)
Proposed SSC(ℓ_1 +Gr)	0.823	0.818	0.427	0.276	0.501	0.341	0.473	0.547	0.323	0.175	0.433	0.363	0.667	0.668
	(0.000)	(0.000)	(0.047)	(0.069)	(0.037)	(0.052)	(0.000)	(0.000)	(0.025)	(0.020)	(0.000)	(0.000)	(0.000)	(0.000)
Proposed SSC(MCP+Gr)	0.823	0.818	0.434	0.294	0.507	0.351	0.558	0.664	0.341	0.180	0.442	0.376	0.721	0.708
	(0.000)	(0.000)	(0.049)	(0.062)	(0.042)	(0.061)	(0.000)	(0.000)	(0.030)	(0.023)	(0.000)	(0.000)	(0.037)	(0.044)

arXiv version