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Summary

𝒳,𝒵 are Euclidean spaces
𝐶 ≠ ∅ ⊂ 𝒳 is a (possibly nonconvex) closed subset of 𝒳
ℎ:𝒳 → ℝ: differentiable, ∇ℎ is Lipschitz continuous over 𝐶
𝑔:𝒵 → ℝ: weakly convex, nonsmooth Lipschitz continuous 

𝐺:𝒳 → 𝒵: smooth (possibly nonlinear) mapping
def

∃𝜂 > 0 s. t. 𝑔 +
𝜂

2
‖ ⋅ ‖2 is convex

◼ Challenging issues: nonconvex constraint 𝐶 

nonsmoothness and nonconvexity of 𝑔

◼ Typical applications: sparsity-aware signal processing, 

e.g., sparse PCA, sparse spectral clustering, robust subspace recovery

◼ Our contributions:

• Proposal of an optimization algorithm of guaranteed global 

convergence to a stationary point

(First available algorithm for ★ , and generalization of [1]).

• Application to sparse spectral clustering (SSC) based on 

nonconvex sparse regularizer

(Inherently first nonconvex approach for SSC).

How to deal with constraint set 𝐶 ? ⇨ parametrization

We consider the following parameterized problem instead of (★):

Parameterize 𝐶 in terms of the Euclidean space 𝒴 with

a smooth mapping 𝐹:𝒴 → 𝒳 such that 𝐶 = 𝐹 𝒚 ∈ 𝒳 𝒚 ∈ 𝒴 .

Key idea

(0,0, −1)

𝑼 ∈ 𝑆𝑡 1,3 ≔ {𝑼 ∈ ℝ3 ∣ 𝑼𝑇𝑼 = 𝑼 2 = 1}

𝑽 ≔ (𝑥, 𝑦, −1)

𝑥, 𝑦, −1 𝑥, 𝑦 ∈ ℝ = ℝ2 × −1 ≡ ℝ2

(0,0,1)

Illustrative example of

parametrization for 𝑆𝑡(1,3)
(stereographic projection [Riemann’1851])

Example: smoothly parameterizable 𝐶
• Stiefel manifold

𝑆𝑡 𝑝, 𝑁 ≔ 𝑼 ∈ ℝ𝑁×𝑝 𝑼𝑇𝑼 = 𝑰𝑝
(with Cayley-type transforms [2,3])

• Bounded-rank matrices

ℝ≤𝑟
𝑀×𝑁 ≔ 𝑿 ∈ ℝ𝑀×𝑁 rank 𝑿 ≤ 𝑟

(with the multiplication 𝑿 = 𝒀𝒁𝑇

𝒀 ∈ ℝ𝑀×𝑟 , 𝒁 ∈ ℝ𝑁×𝑟  [4])

◼ Target problem:

Minimize
𝒙∈𝐶

𝑓 𝒙 ≔ ℎ 𝒙 + 𝑔 ∘ 𝐺 𝒙 ⋯(★)

nonsmoothsmoothconstraint

Minimize
𝒚∈𝒴

𝑓 ∘ 𝐹 𝒚 = ℎ + 𝑔 ∘ 𝐺 ∘ 𝐹(𝒚)⋯

Euclidean space

We have the following relation of necessary conditions 

(optimality condition) of a local minimizer for ★  and .

𝟎 ∈ 𝜕𝑓 𝐹 𝒚⋆ + 𝑁𝐶 𝐹 𝒚⋆ ⇔ 𝟎 ∈ 𝜕 𝑓 ∘ 𝐹 𝒚⋆

Optimality condition for ★ Optimality condition for 

the Clarke regularity on 𝐶 (i.e,. 𝐶 is sufficiently smooth)

𝑁𝐶 𝐹(𝒚⋆) = 𝒙 ∈ 𝒳 D𝐹 𝒚⋆
∗
𝒙 = 𝟎  at 𝒚⋆ ∈ 𝒴

under

Theorem 4.1 [Relations of optimality conditions]

※𝜕𝑓 denotes the general subdifferential.

 𝑁𝐶 𝒙 ⊂ 𝒳 denotes the general normal cone.

D𝐹 𝒚
∗
 denotes the adjoint of the Fréchet derivative (Jacobi matrix) at 𝒚 ∈ 𝒴.

Note: these are different senses

from convex analysis (see [5]).

How to deal with nonsmoothness of 𝑔 ? ⇨ smoothing

Key idea (inspired by [1])

ത𝒛 ∈ 𝒵 .𝜇 𝑔 ത𝒛 ≔ inf
𝒛∈𝒵

𝑔 𝒛 +
1

2𝜇
||𝒛 − ത𝒛||2

Use a smoothed surrogate function of 𝜂-weakly convex 𝑔.

Moreau envelope .𝜇 𝑔 of 𝑔 with 𝜇 ∈ (0, 𝜂−1)

lim
𝜇→0

.𝜇 𝑔 ത𝒛 = 𝑔 ത𝒛

.𝜇 𝑔 is differentiable, and ∇.𝜇 𝑔 is Lipschitz continuous

Theorem 3.1 [Characterization of optimality condition]

For 𝜇𝑛 𝑛=1
∞ ⊂ 0, 𝜂−1

𝑛→∞
0, and 𝒚𝑛 𝑛=1

∞ ⊂ 𝒴
𝑛→∞

∃ഥ𝒚 ∈ 𝒴,

𝑑 𝟎, 𝜕 𝑓 ∘ 𝐹 ഥ𝒚 ≤ liminf
𝑛→∞

∇ ℎ+.𝜇𝑛 𝑔 ∘ 𝐺 ∘ 𝐹 𝒚𝑛

liminf
𝑛→∞

∇ ℎ+.𝜇𝑛 𝑔 ∘ 𝐺 ∘ 𝐹 𝒚𝑛 = 0 implies

𝑑 𝟎, 𝜕 𝑓 ∘ 𝐹 ഥ𝒚 = 0, i. e. , 𝟎 ∈ 𝜕(𝑓 ∘ 𝐹)(ഥ𝒚).

Proposed algorithm achieves liminf
𝑛→∞

∇ ℎ+.𝜇𝑛 𝑔 ∘ 𝐺 ∘ 𝐹 𝒚𝑛 = 0:

1. Set 𝜇𝑛 ≔ 𝜅𝑛−
1

𝑎 and 𝑓[𝑛] ≔ ℎ+.𝜇𝑛 𝑔 ∘ 𝐺

2. Update 𝒚𝑛+1 ≔ 𝒚𝑛 − 𝛾𝑛∇(𝑓[𝑛]∘ 𝐹) 𝒚𝑛 Increment 𝑛

𝛼 > 1, ∃𝛾𝑛> 0, ∃𝜅 > 0

Theorem 3.3 [Convergence analysis (informal)]

Assume that ∇(𝑓𝑛 ∘ 𝐹) is Lipschitz continuous with

a Lipschitz constant 𝜛𝜇𝑛
−1 with some 𝜛 > 0, and

𝛾𝑛 > 0 is computed by the so-called backtracking algorithm.

Then, 𝒚𝑛 𝑛=1
∞  generated by the proposed algorithm satisfies:

liminf
𝑛→∞

∇ (ℎ+.𝜇𝑛 𝑔 ∘ 𝐺) ∘ 𝐹 𝒚𝑛 = 0.

Application to sparse Spectral Clustering (SC)

Goal: split given data 𝝃𝑖 𝑖=1
𝑁 ⊂ ℝ𝑑 into 𝐾 groups without labeled data.

1. Construct a similarity graph 𝒢 of 𝝃𝑖 𝑖=1
𝑁 .

2. Compute 𝐾 smallest eigenvectors 𝑼⋆ ∈ 𝑆𝑡(𝐾, 𝑁) of

the graph Laplacian 𝑳 ≔ 𝑰 − 𝑫−
1

2𝑾𝑫−
1

2 ∈ ℝ𝑁×𝑁.

3. Apply k-means algorithm to 𝑁 row (normalized) vectors of 𝑼⋆.

Outline of SC [6] 𝑫 ∈ ℝ𝑁×𝑁: degree matrix

𝑾 ∈ ℝ𝑁×𝑁: adjacency matrix

(Steps 2 and 3 correspond to splitting 𝒢 into 𝐾 connected subgraphs)

To improve SC, the Sparse SC (SSC) utilizes a prior knowledge

that 𝑼⋆𝑼⋆𝑇 is sparse (block diagonal) in the ideal case [7].

Step 2 of SC can be refined along SSC as:

Eigenvalue decomp. Promote sparsity of 𝑼⋆𝑼⋆𝑇

Find 𝑼⋆ ∈ argmin
𝑼∈𝑆𝑡 𝐾,𝑁

Tr 𝑼𝑇𝑳𝑼 + 𝜆𝜓 𝑼𝑼𝑇 ⋯( )

(𝜓:ℝ𝑁×𝑁 → ℝ: sparsity promoting function)

( ) can be reformulated as  with ℎ 𝑼 ≔ Tr 𝑼𝑇𝑳𝑼 ,
𝑔 ≔ 𝜆𝜓, 𝐺 𝑼 ≔ 𝑼𝑼𝑇 and the generalized Cayley transform [3]

𝐹 ≔ Φ𝑺
−1: 𝒴 → 𝑆𝑡 𝑝, 𝑁 : 𝒀 ↦ 𝑺 𝑰 − 𝒀 𝑰 + 𝒀 −1𝑰𝑁×𝑝,

where 𝒴 ≔ 𝑨 −𝑩𝑇

𝑩 𝟎
∈ ℝ𝑁×𝑁 𝑨𝑇 = −𝑨 ∈ ℝ𝑝×𝑝

𝑩 ∈ ℝ 𝑁−𝑝 ×𝑝
.

We propose to solve ( ) with MCP (Minimax Concave Penalty) [8] as 𝜓.

(𝑆𝑡(𝑝, 𝑁) and 𝐹 above satisfy the assumption in Theorem 4.1)

Result: the proposed SSC with MCP achieves the best performance!
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