

東京工業大学 Tokyo Institute of Technology

A Variable Smoothing for Nonconvexly Constrained Nonsmooth Optimization with Application to Sparse Spectral Clustering

Keita Kume and Isao Yamada, Tokyo Institute of Technology

Summary

■ Target problem:

- \mathcal{X}, \mathcal{Z} are Euclidean spaces
- $C (\neq \emptyset) \subset \mathcal{X}$ is a (possibly nonconvex) closed subset of \mathcal{X}
- $h: \mathcal{X} \to \mathbb{R}$: differentiable, ∇h is Lipschitz continuous over C
- $g: Z \to \mathbb{R}$: weakly convex, nonsmooth Lipschitz continuous • $G: \mathcal{X} \to \mathcal{Z}$: smooth (possibly nonlinear) mapping def $\exists \eta > 0 \text{ s.t. } g +$ η 2 $\|\cdot\|^2$ is convex ■ Typical applications: sparsity-aware signal processing, e.g., sparse PCA, sparse spectral clustering, robust subspace recovery

How to deal with nonsmoothness of $q : \Rightarrow$ smoothing

Key idea (inspired by [1]) Use a smoothed surrogate function of η -weakly convex q .

 $\overline{z} \in \mathcal{Z}$) $^{\mu} g(\overline{z}) := \inf_{\overline{z}}$ $z \in \mathcal{Z}$ $g(\mathbf{z}) +$ 1 2μ $||z-\overline{z}||^2$ Moreau envelope $^{\mu}$ g of g with $\mu \in (0, \eta^{-1})$ lim μ $g(\overline{z}) = g(\overline{z})$

- $\mu\rightarrow 0$ $^{\mu}$ g is differentiable, and ∇^{μ} g is Lipschitz continuous
-

 \blacksquare Challenging issues: nonconvex constraint C nonsmoothness and nonconvexity of g

 $(0,0,1)$

- Our contributions:
	- Proposal of an optimization algorithm of guaranteed global convergence to a stationary point (First available algorithm for (\star) , and generalization of [1]).
- Application to sparse spectral clustering (SSC) based on nonconvex sparse regularizer (Inherently first nonconvex approach for SSC).

How to deal with constraint set $C \cong$ parametrization

Parameterize C in terms of the Euclidean space \mathcal{Y} with a smooth mapping $F: Y \to X$ such that $C = {F(y) \in X \mid y \in Y}.$ Key idea

Theorem 3.1 [Characterization of optimality condition] \cdot For $(\mu_n)_{n=1}^{\infty}$ ($\subset (0, \eta^{-1})$ $n\rightarrow\infty$ 0 , and $(y_n)_{n=1}^{\infty} \subset y$ $n\rightarrow\infty$ $\exists \bar{y} \in \mathcal{Y},$ $d(\mathbf{0}, \partial (f \circ F)(\overline{\mathbf{y}})) \leq \liminf$ $n\rightarrow\infty$ $\nabla \big((h+{}^{\mu_n} g \circ G) \circ F \big) (\boldsymbol{y}_n$

 $(0,0,-1)$ $U \in St(1,3) \coloneqq \{ U \in \mathbb{R}^3 \mid U^T U = ||U||_2 = 1 \}$ $V := (x, y, -1)$ $\{(x, y, -1) | x, y \in \mathbb{R}\} = \mathbb{R}^2 \times \{-1\} \equiv \mathbb{R}^2$ Illustrative example of

parametrization for $St(1,3)$ (stereographic projection [Riemann'1851])

- Stiefel manifold $St(p, N) \coloneqq \left\{ \, \bm{U} \in \mathbb{R}^{N \times p} \,\, \big| \,\, \bm{U}^T \bm{U} = \bm{I}_p \right\}$ (with Cayley-type transforms [2,3])
- Bounded-rank matrices $\mathbb{R}_{\leq r}^{M\times N} := \{ X \in \mathbb{R}^{M\times N} \mid \mathrm{rank}(X) \leq r \}$ (with the multiplication $X = YZ^T$ $Y \in \mathbb{R}^{M \times r}$, $Z \in \mathbb{R}^{N \times r}$] [4])

We consider the following parameterized problem instead of (\star) : Minimize $f \circ F(y) = (h + g \circ G) \circ F(y) \cdots$ $y \in \mathcal{Y}$ Euclidean space

We have the following relation of necessary conditions (optimality condition) of a local minimizer for (\star) and (\bullet) .

Optimality condition for (\star) Optimality condition for (\clubsuit) the Clarke regularity on C (i.e., C is sufficiently smooth) $N_C(F(\mathbf{y}^{\star})) = \{ \mathbf{x} \in \mathcal{X} \mid (DF(\mathbf{y}^{\star}))\}$ ∗ \mathbf{x}) = 0 } at $\mathbf{y}^{\star} \in \mathcal{Y}$ under

 $\mathbf{0} \in \partial f(F(\mathbf{y}^{\star})) + N_C(F(\mathbf{y}^{\star})) \Leftrightarrow \mathbf{0} \in \partial (f \circ F)(\mathbf{y}^{\star})$ Theorem 4.1 [Relations of optimality conditions]

 \angle ightarrow \angle is denoted the general subdifferential. $N_c(\mathbf{x}) \subset \mathcal{X}$ denotes the general normal cone. from convex analysis (see [5]). $DF(y)$ ∗ denotes the adjoint of the Fréchet derivative (Jacobi matrix) at $y \in \mathcal{Y}$. Note: these are different senses liminf $n\rightarrow\infty$ $\nabla \big((h + {}^{\mu_n} g \circ G) \circ F \big) (\mathbf{y}_n) \big\| = 0$ implies $d(\mathbf{0}, \partial (f \circ F)(\overline{\mathbf{y}})) = 0$, i. e., $\mathbf{0} \in \partial (f \circ F)(\overline{\mathbf{y}})$.

Proposed algorithm achieves liminf $n\rightarrow\infty$ $\nabla \big((h + {}^{\mu n} g \circ G) \circ F \big) (\mathbf{y}_n) \big\| = 0$: 1. Set $\mu_n := \kappa n$ − 1 \overline{a} and $f_{[n]} := h + \mu n$ g o G $\left(\alpha > 1, \exists \gamma_n > 0, \exists \kappa > 0 \right)$ 2. Update $y_{n+1} := y_n - \gamma_n \nabla (f_{[n]} \circ F)(y_n)$ Increment n

Theorem 3.3 [Convergence analysis (informal)] Assume that $\nabla (f_{[n]} \circ F)$ is Lipschitz continuous with a Lipschitz constant $\omega \mu_n^{-1}$ with some $\omega > 0$, and $\gamma_n > 0$ is computed by the so-called *backtracking algorithm*. Then, $(y_n)_{n=1}^{\infty}$ generated by the proposed algorithm satisfies: liminf $n\rightarrow\infty$ $\nabla((h+{}^{\mu}n\,g\circ G)\circ F)(y_n)||=0.$

Example: smoothly parameterizable C

Minimize
$$
f(x) := h(x) + g \circ G(x) \cdots (\star)
$$

constant smooth nonsmooth

To improve SC, the Sparse SC (SSC) utilizes a prior knowledge that $U^{\star}U^{\star T}$ is sparse (block diagonal) in the ideal case [7].

Step 2 of SC can be refined along SSC as: Eigenvalue decomp. Promote sparsity of $U^{\star}U^{\star T}$ Find $U^* \in \text{argmin}$ $\boldsymbol{U} \in St(K,N)$ $Tr(U^T LU)$, + $\lambda \psi(UU^T) \cdots$ (\spadesuit) $(\psi: \mathbb{R}^{N \times N} \to \mathbb{R}$: sparsity promoting function)

 (\spadesuit) can be reformulated as (\clubsuit) with $h(U) := Tr(U^T L U)$, $g = \lambda \psi$, $G(U) := UU^{T}$ and the generalized Cayley transform [3] $F \coloneqq \Phi_S^{-1}: \mathcal{Y} \to St(p,N): Y \mapsto S(I-Y)(I+Y)^{-1}I_{N\times p},$ where $y := \begin{cases} A & -B^T \end{cases}$ \boldsymbol{B} 0 $\in \mathbb{R}^{N \times N}$ $\left| A^T = -A \in \mathbb{R}^{p \times p}$ $B \in \mathbb{R}^{(N-p)\times p}$.

 $(St(p, N)$ and F above satisfy the assumption in Theorem 4.1)

We propose to solve (\spadesuit) with MCP (Minimax Concave Penalty) [8] as ψ .

Application to sparse Spectral Clustering (SC)

Goal: split given data $(\xi_i)_{i=1}^N \subset \mathbb{R}^d$ into K groups without labeled data.

Outline of SC [6] $\left[D \in \mathbb{R}^{N \times N} \right]$: degree matrix

1. Construct a similarity graph G of $(\xi_i)_{i=1}^N$. 2. Compute *K* smallest eigenvectors $U^* \in St(K, N)$ of the graph Laplacian $L := I - D$ − 1 $\overline{2}WD$ − 1 $\overline{z} \in \mathbb{R}^{N \times N}$. 3. Apply k-means algorithm to N row (normalized) vectors of U^* . $W \in \mathbb{R}^{N \times N}$: adjacency matrix \int

(Steps 2 and 3 correspond to splitting G into K connected subgraphs)

Result: the proposed SSC with MCP achieves the best performance!

[1] A. Böhm, S.J. Wright, "Variable smoothing for weakly convex composite functions," J. Optim. Theory Appl., 2021.

- [2] K. Kume, I. Yamada, "A global Cayley parametrization of Stiefel manifold for direct utilization of optimization mechanisms over vector spaces," ICASSP, 2021.
- [3] K. Kume , I. Yamada, "Generalized left-localized Cayley parametrization for optimization with orthogonality constraints," Optimization, 2022.
- [4] E. Levin, J. Kileel, N. Boumal, "The effect of smooth parametrizations on nonconvex optimization landscapes," Math. Program., 2024. [5] R. Rockafellar, R. J.-B. Wets, *Variational Analysis*, Springer Verlag, 3rd edition, 2010.
- [6] A. Ng, M. Jordan, Y. Weiss, "On spectral clustering: Analysis and an algorithm," NeurIPS, 2001.
- [7] C. Lu, S. Yan, Z. Lin, "Convex sparse spectral clustering: Single-view to multi-view," IEEE Trans. Image Process., 2016. [8] C.-H. Zhang, "Nearly unbiased variable selection under mini- max concave penalty," The Annals of Statistics, 2010.

arXiv version