The automatically capable MUSeed§ Foreground non-means the device. The address decomposition acquired instances project is funded by the University of Missouri-Columbia, MO 65211, USA

Introduction

Plant phenotyping based on digital sensory datasets grow exponentially in size and contain more information thanks to advances in high throughput imaging and sensor technologies. Automated image processing and analysis methods are needed to efficiently process the acquired data and to support exploration, understanding, and discovery in plant sciences and agriculture. Advances in mobile handheld device technologies improve the promise for non-destructive and non-invasive digital plant phenotype quantification. In this poster, we present an Android-based mobile application named MUSeed that automatically computes seed morphometry utilizing image processing techniques. Unlike most of the existing tools, MUSeed does not impose restrictions on arrangement of seeds since it is capable of handling touching seed instances.

Overview

MUSeed is implemented in Java with OpenCV libraries. The integrated development environment is Android Studio. The application is capable of processing seed images and generating measurements of each seed. The measurements can be exported to a text file and sent to an email address provided by the user.

For more information, please visit: www.smartmscope.com

Cluster Decomposition

- **Watershed with Edge-Augmented Markers (WEAM)**
 - region-based segmentation

Watershed with Edge-Augmented Markers (WEAM) combines the general marker-controlled watershed algorithm with Canny edge detection to improve the segmentation performance by creating more accurate internal markers.

Step 1. The external marker indicating the background area is obtained using morphological dilation on the binary mask of an image.

Step 2. Canny edge detection is performed on the original RGB image. The binary mask is overlaid with the detected edges.

Step 3. The Euclidean distance transform is applied to the edge-augmented binary mask. The local maxima on the distance map are selected as the internal markers.

Step 4. Apply marker-controlled watershed algorithm using both original RGB image and markers as inputs.

- **Concave Point Analysis (CPA)**
 - contour-based segmentation

Step 1. Concave points are detected based on a sliding kernel method and filtered out with distance to convex hull.

Step 2. For each concave point, direction of concavity is estimated.

Step 3. Concave points are matched according to a set of criteria including direction of concavity and boundary crossing information.

Step 4. Line joining the matching concave points are drawn to split the cluster.

Segmentation Selection using Fitness Function

An A fitness function is performed to evaluate possible combinations of parameters so it can find the best segmentation result. $f_1(\text{fragmentation}) = \left| n - n_{\text{true}} \right|$, $f_2(\text{shape accuracy}) = \frac{\left| g_x - g_{\text{true}} \right|}{g_{\text{true}}} + \frac{\left| g_y - g_{\text{true}} \right|}{g_{\text{true}}}$, $f_3(\text{size & shape variability}) = \sigma_i + \sigma_w + \sigma_h$, $\text{fitness} = \frac{1}{\sigma_i + \sigma_w + \sigma_h} f_1 f_2 f_3$ where g_x, g_y, σ_i, σ_w, and σ_h are the estimated area, width, and height of a regular-size seed, respectively. Likewise, g_x, g_y, σ_i, σ_w, and σ_h are the standard deviation of area, width, and height of segments.

Results

Sample outputs from MUSeed, GrainScan, and ImageJ. Red rectangles mark the failed segmentation.

Mean and standard deviation of seed area error compared to the ground truth.

Average recall, precision, and F-measure of MUSeed, GrainScan, and ImageJ on 7 seed datasets.

<table>
<thead>
<tr>
<th>Data</th>
<th>Average recall / Precision / F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSeed</td>
<td>0.98/0.97/0.97</td>
</tr>
<tr>
<td>GrainScan</td>
<td>0.95/0.98/0.96</td>
</tr>
<tr>
<td>ImageJ</td>
<td>0.95/0.97/0.96</td>
</tr>
<tr>
<td>Ozark</td>
<td>1.00/1.00/1.00</td>
</tr>
<tr>
<td>Ozone</td>
<td>0.91/0.96/0.93</td>
</tr>
<tr>
<td>Wyldwood</td>
<td>0.97/0.99/0.98</td>
</tr>
<tr>
<td>York</td>
<td>0.96/0.94/0.95</td>
</tr>
<tr>
<td>Average</td>
<td>0.96/0.97/0.96</td>
</tr>
</tbody>
</table>

The SmartMScope project is funded by the University of Missouri Interdisciplinary Innovation Fund.