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The Intersection of Planning and Communications

- Without reliable wireless communications, drones cannot coordinate

- Consequences of network losses
— Failed delivery of sensed data to processing nodes
— Insufficient situational awareness for effective in-field planning
-~ Delayed/lost command and control messages (focus of this work)
— Worst case: mission failure!

- Despite these adverse effects, most planning literature assumes
perfect communication among nearby agents

- This has led to various techniques to maintain network connectivity
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Related Work

- "Binary" connectivity
— Connectivity-as-a-service [Cornejo, '09]
Refine arbitrary motion plan to preserve network connectivity and meet goals
— Control-theoretic connectivity [Zavlanos, '11]

Convex optimization and subgradient descent algorithms to maximize
network's algebraic connectivity

Potential fields to control network topology
— Connectivity-aware task allocation [Ponda, '12]

Extend the well-known Consensus Based Bundle Algorithm (CBBA [Choi,
'09]) to include planning for relays

- Connectivity with variable reliability

- BER- and throughput-aware task allocation [Kopeikan, '12]
Extend CBBA with relays to meet BER and throughput constraints

Prior work investigates how planning affects communication,
but not how unreliable communication affects planning
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The Task Allocation Problem

- Given
— A set of drones
— A set of tasks
- Goal
— Allocate tasks to drones (at most one drone per task)
— Maximize sum utility
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X Drone Task
Example environment (with obstacles)

We investigate the effect of realistic network environments on the
Asynchronous CBBA (ACBBA [Johnson, ‘“10], [Johnson, ‘11])
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Problem Formulation: Notation

- A=1{12,..,N,}. Set of agents (drones)
— i € A: Specific agent

« T=1{1,2,..,N;}: Set of tasks
—~ j € T: Specific task

o X; = (X1, X2, -, Xin,): @gent i’s assignment vector
- x;j=1ifagenti € Ais assigned task j € T
- x;; = 0, otherwise

- p;: ordered sequence of tasks assigned to agent i

« u;;(7;;(p;)): agent i’s utility for completing task j at time 7;;(p;)
- w;(t;;(py)) = r;A7UPY where 1; is reward for task j and 1 € [0,1)
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Problem Formulation: Optimization

max z (2 u; (75 () xij)

i€A \JET

subject to z Xij < Ly, VieA
JET
inj <1, Vj eET

IEA

x;€{01}, V(i,j))EAXT

If agents form a connected network and there are no transmission errors,
then the CBBA guarantees a non-conflicting task assignment.
This assignment achieves within 50% of the optimal utility.
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Internal State Information in the CBBA

Each agent i € A maintains the following five internal state vectors

- Bundle vector b;
- Element b;,, € T corresponds to the nth task assigned to agent i
— Tasks are ordered based on when they are "won"

- Path vector p;

— Contains same tasks as bundle, but ordered based on when they will be
completed

- Winning agent vector z;
- Element z;; € A indicates who agent i believes has highest bid for task j

Winning bid vector y;
- Element y;; € R, corresponds to agent z;;'s winning bid for task j

Timestamp vector t;
- Element t;; € R, indicates when agent z;; placed bid y;; on task j
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CBBA lterations

The CBBA iterates among three phases

- Bundle construction phase
-~ Each agent adds tasks to its bundle in a sequential greedy fashion

Bundleh; @ @® @ @ @ ' ® @ @

__________________________________________________________

Pathp, @—@ G—@—0@® v, (1)) — :];gx —p; @—@—0
@—0—@® v (r;;(r)) —
@—@—® v, (r;;(p})) — M —uy;(1;;(p))

- State exchange phase

— Each agent communicates its winning agent vector z;, winner bid vector
¥, and timestamp vector t;

- Conflict resolution phase
— Each agent releases tasks it was outbid on and tasks added thereafter
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Asynchronous CBBA (ACBBA) vs. CBBA

- ACBBA is conceptually similar to the CBBA, but
— Each agent builds its bundle and performs consensus asynchronously

— Each agent only transmits the winning agent, winning bid, and
timestamp for a single task at a time (less bandwidth required)
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ACBBA Simulation Setup

100 ACBBA simulation scenarios
- N,=1,2,..10tasksand N, = 1,2, ...10 drones

Each scenario executed 100 times
— Drones randomly dropped in 50 m radius circle (ensures connectivity)
— Tasks randomly dropped in 300 m radius circle (@ Task |

Agent
IEEE 802.11b Wi-Fi broadcast mode (ns-3) S
— No ACKs
— No retransmissions
— No exponential backoff
UDP (ns-3)
— Connectionless transport protocol
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Evaluation Metrics

- Redundant task assignments

- If n; agents are assigned the same task j € T, then there are n; — 1
redundant assignments of task j

- Total number of redundant task assignments n,. := 3, .y max(n; — 1,0)

- Total number of transmission/reception events

- Nry = XieaNrxi» Where nry; is the number of times agent i broadcasts
its state information

— Mgy = XieaNrx,i» Where ngpy ; is the number of times agent i receives
state information
Fraction of received packets
- frx = ngx/[nrx - (Ng — 1)]
Negotiation time

— Elapsed time from the first bundle construction phase to the last conflict
resolution phase
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Simulation Results (1/3)
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Fig A. Redundant task assignments n,
vs. number of agents N,.

20.0 4
—8— Tasks: 5

—— Tasks: 7

17 —k— Tasks: 10

15.0 1

12.5 A

10.0 1

7.9

5.0 1

2.5 1

Average Number of Repeated Task Assignments (n,)

0.0 1

0,I7'0 0.'75 0.80 0.85 0.90 0.95
Fraction of Packets Received (f;)

Fig B. Redundant task assignments n,
vs. fraction of packets received fxy.

- Number of redundant task assignments increases with number of agents

- Number of redundant task assignments is negatively correlated with the

fraction of packets received

- What causes this? Channel errors and/or collisions?
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Simulation Results (2/3)
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Fig C. Fraction of packets received fzyx vs. number of agents N,

- The fraction of received packets decreases with the number of agents and
is approximately invariant in the number of tasks

- Simulation channel errors are independent of number of agents =
Performance degradation is primarily due to collisions

- Why are collisions so problematic?
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Simulation Results (3/3)
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Fig D. Total transmissions nry vs. number
of agents N,. Solid and dashed lines show
lossy and lossless results, respectively.
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Fig E. Negotiation time (s)
vs. number of agents N,,.

Lossless communication: TX events increase with number of agents

Lossy communication: TX events initially increase with number of agents,
but eventually decline due to effect of collisions

Decline in transmission events is related to shortened negotiation time
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Conclusion T h an k YO U !

- ACBBA vyields inefficient task assignments in lossy networks

- Agents mistakenly attribute absence of new messages in network to
reaching consensus, when actually due to lost packets

— Collisions have more significant impact than channel errors
- UDP + IEEE 802.11 broadcast mode provides insufficient QoS

- Ongoing work:
— Study performance of ACBBA under other network configurations

- UDP + IEEE 802.11 unicast mode
- TCP + IEEE 802.11 unicast mode

« Future work:

— Make ACBBA more robust to network disruptions

— Study interaction of planning and communications for other applications
- Swarming, formation control, etc.
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Example Execution of ACBBA in the UB-ANC Emulator

py J=iiuoid
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