Performance of the Asynchronous Consensus Based Bundle Algorithm in Lossy Network Environments

*Dept. of Electrical Engineering **Dept. of Computer Science and Engineering
University at Buffalo, The State University of New York, Buffalo, NY

nmastron@buffalo.edu
http://www.eng.buffalo.edu/~nmastron/

July 9, 2018

IEEE SAM Special Session
Signal Processing and Communications for Resilient Autonomous Swarms
The Intersection of Planning and Communications

• Without reliable wireless communications, drones cannot coordinate

• Consequences of network losses
 – Failed delivery of sensed data to processing nodes
 – Insufficient situational awareness for effective in-field planning
 – Delayed/lost command and control messages (focus of this work)
 – Worst case: mission failure!

• Despite these adverse effects, most planning literature assumes perfect communication among nearby agents

• This has led to various techniques to maintain network connectivity
Related Work

- "Binary" connectivity
 - Connectivity-as-a-service [Cornejo, '09]
 - Refine arbitrary motion plan to preserve network connectivity and meet goals
 - Control-theoretic connectivity [Zavlanos, '11]
 - Convex optimization and subgradient descent algorithms to maximize network's algebraic connectivity
 - Potential fields to control network topology
 - Connectivity-aware task allocation [Ponda, '12]
 - Extend the well-known Consensus Based Bundle Algorithm (CBBA [Choi, '09]) to include planning for relays

- Connectivity with variable reliability
 - BER- and throughput-aware task allocation [Kopeikan, '12]
 - Extend CBBA with relays to meet BER and throughput constraints

Prior work investigates how planning affects communication, but not how unreliable communication affects planning
The Task Allocation Problem

- **Given**
 - A set of drones
 - A set of tasks

- **Goal**
 - Allocate tasks to drones (at most one drone per task)
 - Maximize sum utility

Example environment (with obstacles)

We investigate the effect of realistic network environments on the Asynchronous CBBA (ACBBA [Johnson, ‘10], [Johnson, ‘11])
Problem Formulation: Notation

- \(A = \{1,2, \ldots, N_a\} \): Set of agents (drones)
 - \(i \in A \): Specific agent
- \(T = \{1,2, \ldots, N_t\} \): Set of tasks
 - \(j \in T \): Specific task
- \(x_i = (x_{i1}, x_{i2}, \ldots, x_{iN_t}) \): agent \(i \)'s assignment vector
 - \(x_{ij} = 1 \) if agent \(i \in A \) is assigned task \(j \in T \)
 - \(x_{ij} = 0 \), otherwise
- \(p_i \): ordered sequence of tasks assigned to agent \(i \)
- \(u_{ij}(\tau_{ij}(p_i)) \): agent \(i \)'s utility for completing task \(j \) at time \(\tau_{ij}(p_i) \)
 - \(u_{ij}(\tau_{ij}(p_i)) = r_j \lambda^{\tau_{ij}(p_i)} \), where \(r_j \) is reward for task \(j \) and \(\lambda \in [0,1) \)
Problem Formulation: Optimization

\[
\begin{align*}
\text{max} & \quad \sum_{i \in A} \left(\sum_{j \in T} u_{ij}(\tau_{ij}(p_i)) x_{ij} \right) \\
\text{subject to} & \quad \sum_{j \in T} x_{ij} \leq L_t, \quad \forall i \in A \\
& \quad \sum_{i \in A} x_{ij} \leq 1, \quad \forall j \in T \\
& \quad x_{ij} \in \{0,1\}, \quad \forall (i,j) \in A \times T
\end{align*}
\]

If agents form a connected network and there are no transmission errors, then the CBBA guarantees a non-conflicting task assignment. This assignment achieves within 50% of the optimal utility.
Internal State Information in the CBBA

Each agent $i \in A$ maintains the following five internal state vectors

- **Bundle vector** b_i
 - Element $b_{in} \in T$ corresponds to the nth task assigned to agent i
 - Tasks are ordered based on when they are "won"

- **Path vector** p_i
 - Contains same tasks as bundle, but ordered based on when they will be completed

- **Winning agent vector** z_i
 - Element $z_{ij} \in A$ indicates who agent i believes has highest bid for task j

- **Winning bid vector** y_i
 - Element $y_{ij} \in R_+$ corresponds to agent z_{ij}'s winning bid for task j

- **Timestamp vector** t_i
 - Element $t_{ij} \in R_+$ indicates when agent z_{ij} placed bid y_{ij} on task j
The CBBA iterates among three phases

- **Bundle construction phase**
 - Each agent adds tasks to its bundle in a *sequential greedy* fashion

- **State exchange phase**
 - Each agent communicates its winning agent vector \(z_i \), winner bid vector \(y_i \), and timestamp vector \(t_i \)

- **Conflict resolution phase**
 - Each agent releases tasks it was outbid on and tasks added thereafter
Asynchronous CBBA (ACBBA) vs. CBBA

- ACBBA is conceptually similar to the CBBA, but
 - Each agent builds its bundle and performs consensus asynchronously
 - Each agent only transmits the winning agent, winning bid, and timestamp for a *single task* at a time (less bandwidth required)
ACBBA Simulation Setup

- 100 ACBBA simulation scenarios
 - $N_t = 1, 2, \ldots, 10$ tasks and $N_a = 1, 2, \ldots, 10$ drones

- Each scenario executed 100 times
 - Drones randomly dropped in 50 m radius circle (ensures connectivity)
 - Tasks randomly dropped in 300 m radius circle

- IEEE 802.11b Wi-Fi broadcast mode (ns-3)
 - No ACKs
 - No retransmissions
 - No exponential backoff

- UDP (ns-3)
 - Connectionless transport protocol
Evaluation Metrics

- **Redundant task assignments**
 - If n_j agents are assigned the same task $j \in T$, then there are $n_j - 1$ redundant assignments of task j
 - Total number of redundant task assignments $n_r := \sum_{j \in T} \max(n_j - 1, 0)$

- **Total number of transmission/reception events**
 - $n_{TX} := \sum_{i \in A} n_{TX,i}$, where $n_{TX,i}$ is the number of times agent i broadcasts its state information
 - $n_{RX} := \sum_{i \in A} n_{RX,i}$, where $n_{RX,i}$ is the number of times agent i receives state information

- **Fraction of received packets**
 - $f_{RX} := n_{RX} / [n_{TX} \cdot (N_a - 1)]$

- **Negotiation time**
 - Elapsed time from the first bundle construction phase to the last conflict resolution phase
Simulation Results (1/3)

- Number of redundant task assignments increases with number of agents.
- Number of redundant task assignments is negatively correlated with the fraction of packets received.
- What causes this? Channel errors and/or collisions?

Fig A. Redundant task assignments n_r vs. number of agents N_a.

Fig B. Redundant task assignments n_r vs. fraction of packets received f_{RX}.
Simulation Results (2/3)

- The fraction of received packets decreases with the number of agents and is approximately invariant in the number of tasks.
- Simulation channel errors are independent of number of agents \(\Rightarrow \) Performance degradation is primarily due to collisions.
- *Why are collisions so problematic?*

Fig C. Fraction of packets received \(f_{RX} \) vs. number of agents \(N_a \)
Simulation Results (3/3)

Fig D. Total transmissions n_{TX} vs. number of agents N_a. Solid and dashed lines show lossy and lossless results, respectively.

- **Lossless communication:** TX events increase with number of agents
- **Lossy communication:** TX events initially increase with number of agents, but eventually decline due to effect of collisions
- Decline in transmission events is related to shortened negotiation time

Fig E. Negotiation time (s) vs. number of agents N_a.

• Tasks: 5
• Tasks: 7
• Tasks: 10
ACBBA yields inefficient task assignments in lossy networks

Agents mistakenly attribute absence of new messages in network to reaching consensus, when actually due to lost packets
 - Collisions have more significant impact than channel errors

UDP + IEEE 802.11 broadcast mode provides insufficient QoS

Ongoing work:
 - Study performance of ACBBA under other network configurations
 • UDP + IEEE 802.11 unicast mode
 • TCP + IEEE 802.11 unicast mode

Future work:
 - Make ACBBA more robust to network disruptions
 - Study interaction of planning and communications for other applications
 • Swarming, formation control, etc.
Task Allocation and Planning for Connectivity

