A Statistical Interpretation of the **Maximum Subarray Problem**

(Maximum Sub)a	rra	ay	Pr	ob	ler	1
	Given an array of numbers, find contiguous subarray with largest sum					S	um =	6
	Efficient $O(N)$ algorithm by Kadane [1]		-3	-2	4	-1	0	
	Some generalizations also have <i>O(N)</i> algorithms [2]							
	 Applications: Biomolecular sequence analysis [2,3] 	• I	mage	e pro	cessii	ng, co	ompu	t€
	Spl						22	
	rat mdr1b-59GCGGGGCAACAGGGCCGCCGG-36mouse mdr1b-55GCCGGGCCTTAGGGCGGCCGCTGG-32hamster pgp2-17ACGGGGCGCGGGGGCGGCGGCTGG-32hamster pgp1-51GAGTCAAGCGGGGGCGGCGGCTGG-32mouse mdr1a-123GAGTCAAGCTGGGCCGGGAGCTGG-36human MDR1-120CAGTCAAGCCGGGCCGGGAGCAGC-97human MDR1-64ACAGCGCCGGGGCGTGGGCTGAGC-41MDR consensus GC regionGGGGCGGCAGCTGGTGGTGGTGG	5 2 3 0 0 7 L						
	A C G							

Penalized Maximum Subarra
from Exponential FamiliesAssume
$$w_1, ..., w_N$$
 i.i.d. ~ exponential familyother sufficient state
 $f(w_t) = h(w_t) \exp(\eta w_t + \eta'^T T(w_t) - A(\eta, \eta'))$
Instrual parameter
interval: $\eta = \eta_1$
background: $\eta = \eta_0$ log-prime
wtitself is one of the
sufficient statistics
background: $\eta = \eta_0$ Then maximum likelihood estimate of m, M reduces to penalized max
with optimal penalty $\delta = \frac{A(\eta_1, \eta') - A(\eta_0, \eta')}{\eta_1 - \eta_0}$ Proposition: Penalty falls between interval mean and background me
 $\mu_0 \le \delta \le \mu_1$ Example: Gaussian
 $\delta = \frac{\mu_0 + \mu_1}{2}$ Example: Poisson with rates λ_0, λ_1
 $\delta = \frac{\lambda_1 - \lambda_0}{\log \lambda_1 - \log \lambda_0}$ In practice, can set δ based on prior knowledge of $\mu_1 - \mu_0$

Dennis Wei Dmitry Malioutov

We study a noisy localization problem inspired by the classical maximum subarray problem. While the naïve solution fails completely, penalized and constrained versions can succeed and are theoretically justified.

IBM Research Millenium Management

[4] V. Lempitsky and A. Zisserman (2010), "Learning to count objects in images." Advances in Neural Information Processing Systems (NeurIPS).

