
A Statistical Interpretation of the 
Maximum Subarray Problem

Maximum Subarray Problem A Statistical Localization Problem
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Naïve Maximum Subarray Fails Completely

Numerical Simulations

Lemma:  For naïve max subarray 
𝛿 = 0, expected localization error
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𝑁 −𝑀
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Lemma:  For penalized version 𝛿 > 0, 
error independent of 𝑁

We study a noisy localization problem inspired by the classical maximum subarray problem. While the naïve solution
fails completely, penalized and constrained versions can succeed and are theoretically justified.
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2-D Example: SAR Vehicle Localization
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𝑚 𝑀

Sequence of random variables 𝑤", … , 𝑤#

Interval 𝑤$, … , 𝑤% has mean 𝜇" different 
from background mean 𝜇!

Estimate 𝒎,𝑴 from one observation of 
𝑤", … , 𝑤#

Penalized and Constrained Versions Succeed
1) Penalized:
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2) Constrained:
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1) is the Lagrangean of 2)

Naïve maximum subarray:
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sum = 6Given an array of numbers, find 
contiguous subarray with largest sum

Efficient 𝑂(𝑁) algorithm by Kadane [1]

Some generalizations also have 𝑂 𝑁  
algorithms [2]

Applications:
• Biomolecular sequence analysis [2,3] • Image processing, computer vision (2-D) [4]

Penalized Maximum Subarray 
from Exponential Families

Assume 𝑤", … , 𝑤# i.i.d. ~ exponential family

𝑓 𝑤' = ℎ 𝑤' exp 𝜂𝑤' + 𝜂)*𝑇 𝑤' − 𝐴(𝜂, 𝜂))

Then maximum likelihood estimate of 𝑚,𝑀 reduces to penalized max subarray 
with optimal penalty 

𝛿 =
𝐴 𝜂", 𝜂) − 𝐴(𝜂!, 𝜂))

𝜂" − 𝜂!

Proposition:  Penalty falls between interval mean and background mean
𝜇! ≤ 𝛿 ≤ 𝜇"

Example:  Gaussian

𝛿 =
𝜇! + 𝜇"
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Example:  Poisson with rates 𝜆!, 𝜆"

𝛿 =
𝜆" − 𝜆!

log 𝜆" − log 𝜆!

In practice, can set 𝛿 based on prior knowledge of 𝜇" − 𝜇!

𝑤' itself is one of the 
sufficient statistics

natural parameter
interval: 𝜂 = 𝜂"

background: 𝜂 = 𝜂!

other sufficient statistics

log-partition function

Penalized vs. Constrained Formulations

Localization Error Analysis

deviation from optimal penalty

Recovery of Planted Intervals

Penalized solutions 
appear to lie on 
convex hull of 
constrained solutions


