A Statistical Interpretation of the Maximum Subarray Problem

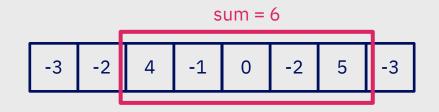
ICASSP 2023

Dennis Wei IBM Research

Dmitry Malioutov Millenium Management

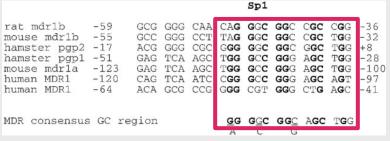
Maximum Subarray Problem

Given an array of numbers, find contiguous subarray with largest sum



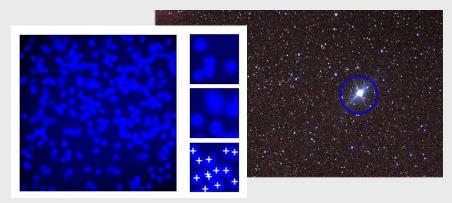
Applications:

Biomolecular sequence analysis



Thottassery et al. (1999), J. Biol. Chem. 274(5):3199-206

• Image processing, computer vision (2-D)



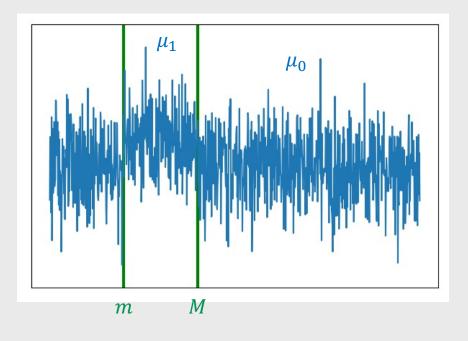
Lempitsky & Zisserman (2010), NeurIPS

A Statistical Localization Problem

Sequence of random variables w_1, \ldots, w_N

Interval w_m , ..., w_M has mean μ_1 different from background mean μ_0

Localize the interval (estimate m, M) from observation of w_1, \ldots, w_N



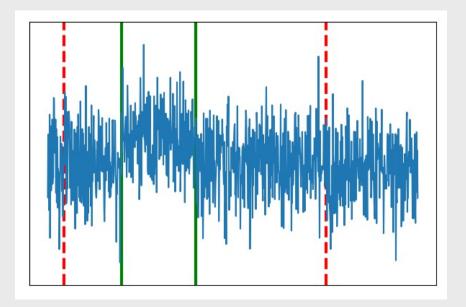
Motivating Experiment

Apply maximum subarray:

$$\widehat{m}, \widehat{M} = \arg \max_{m, M} \sum_{m}^{M} w_t$$

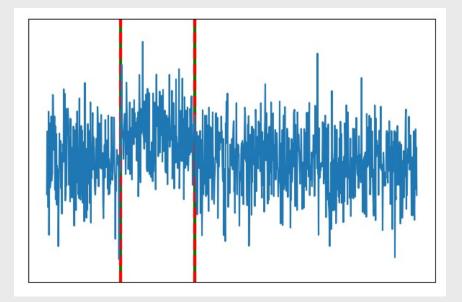
Efficient O(N) algorithm by Kadane

Fails at localization!



Fixing the Failure

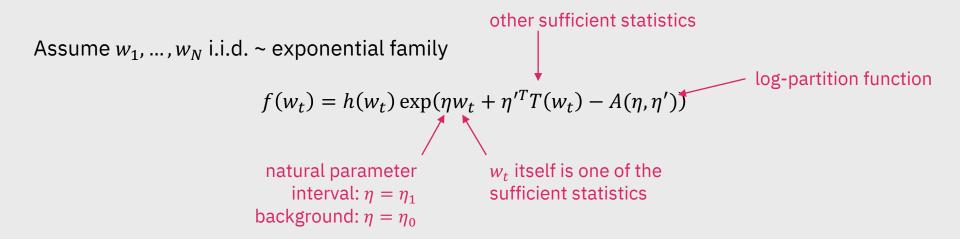
- 1) Penalized maximum subarray $\widehat{m}, \widehat{M} = \arg \max_{m,M} \sum_{m}^{M} (w_t - \delta)$
- 2) Constrained maximum subarray $\widehat{m}, \widehat{M} = \arg \max_{m,M} \sum_{m}^{M} w_t$ s.t. $M - m + 1 \le K$



Focus on 1) in this talk

See paper for Lagrangean + convex hull relationship between 1) and 2)

Penalized Max Subarray from Exponential Families



Then maximum likelihood estimate of boundaries m, M reduces to penalized max subarray

$$\widehat{m}, \widehat{M} = \arg \max_{m,M} \sum_{m}^{M} (w_t - \delta)$$

with penalty $\delta = \frac{A(\eta_1, \eta') - A(\eta_0, \eta')}{\eta_1 - \eta_0}$

Penalty Value for Exponential Families

$$\delta = \frac{A(\eta_1, \eta') - A(\eta_0, \eta')}{\eta_1 - \eta_0}$$

Proposition: Penalty falls between interval mean and background mean

$$\mu_0 \le \delta \le \mu_1$$

Example: Gaussian

$$\delta = \frac{\mu_0 + \mu_1}{2}$$

Example: Poisson with rates λ_0, λ_1 $\delta = \frac{\lambda_1 - \lambda_0}{\log \lambda_1 - \log \lambda_0}$

In practice, can set δ based on prior knowledge of $\mu_1-\mu_0$

Localization Analysis

Penalized maximum subarray

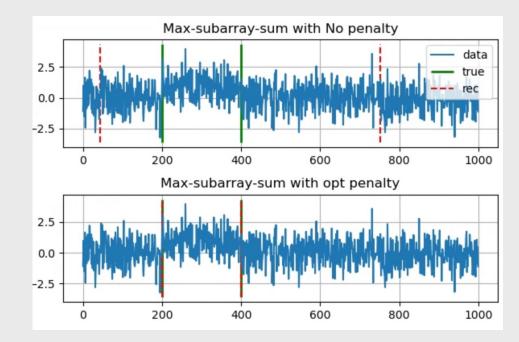
$$\widehat{m}, \widehat{M} = \arg \max_{m,M} \sum_{m}^{M} (w_t - \delta)$$

Lemma: For naïve case $\delta = 0$, expected localization error

$$\mathbb{E}\left[\widehat{M} - M \mid \widehat{M} \ge M\right] = \frac{N - M}{2}$$

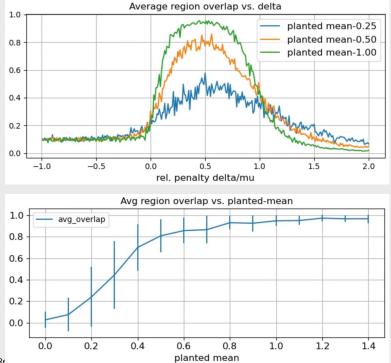
length of array

Lemma: For $\delta > 0$, error independent of *N*

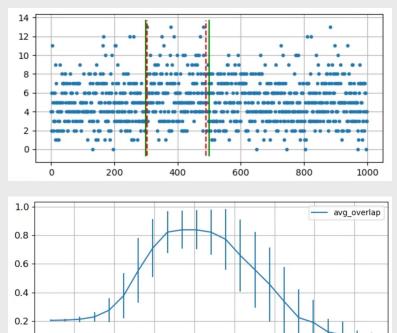


Numerical Simulations

Gaussian ($\mu_0 = 0, \mu_1 = \mu$)



Poisson ($\lambda_0 = 5, \lambda_1 = 6$)



0.0

0.85

0.90

0.95

1.00

delta/delta opt

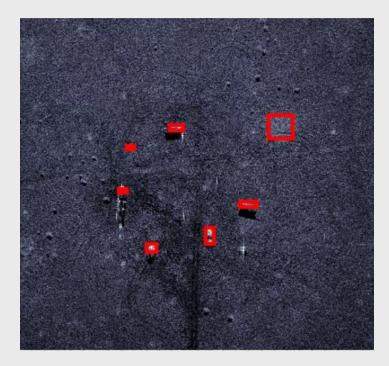
1.05

1.10

1.15

1.20

Works in 2-D Also



Summary

Statistical localization problem inspired by maximum subarray

Naïve max subarray fails to localize while penalized and constrained versions succeed

Penalized version results from exponential families

Paper: https://arxiv.org/abs/2304.13307