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Introduction

• Approximately 300,000 people with spinal cord injury (SCI) 
live in the United States of America, with 17,000 new cases each 
year [1].

• SCI can lead to loss of strength, sensation, and function which 
in turn may lead to reduced mobility such as the inability to 
stand and walk [2, 3]. 

• Restoration of mobility function in individuals with SCI can 
have a significant impact on the health, quality of life, and social 
participation [3, 4].

1. National Spinal Cord Injury Statistical Center, 2016; 2. MacDonald et al. 2002; 3. Hiremath et al. 2017; 4. Jayaraman et al. 2017



Introduction

• Assistive technologies such as wheelchairs, canes, and walkers 
have significantly improved the mobility, function, and quality 
of life for individuals with SCI. 

• Depending on the person’s function and the level of SCI a 
clinician may prescribe various forms of assistive technologies 
for mobility.



Variation in Mobility
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Figure 1: A person-specific function will influence the choice of assistive technology 
for various mobility modes.



Objective

• Currently, most gait research has focused on how to assist 
people towards "normal" walking, defined as walking without 
the use of assistive technologies.

• The proposed framework recognizes the importance and 
normality of assistive devices for individuals with SCI. 



Prior Work

• Sensor-based activity monitors have been used to track wheelchair 
movement, arm movement, and physiological changes for quantifying 
physical activities in individuals with SCI [5].

• Research in other populations with mobility impairments include sensors 
worn on ankles, shank and waist towards detecting and quantifying 
mobility in individuals with stroke [6].

5. Hiremath et al. 2013; 6. Dobkin et al. 201



Prior Work

• A major limitation of the current research is that the existing 
research has focused on individuals who use specific types of 
assistive technologies such as manual wheelchairs or walking.



Framework
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Figure 2:  A framework consisting of measuring and predicting 
physical activity and health and function.
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Figure 3: Machine learning algorithms used to detect various 
mobility modes.



Sensor Placement

Figure 4: An investigator using various types of mobility aids. Red 
circles highlight the SenseWear armbands



Feature Data

• Statistical measures such as time and frequency domain 
features were extracted to distinguish between various types of 
activities and mobility modes.

• Time domain features (mobility vs. other physical activities)
• Mean, mean absolute deviation and peaks

• Frequency domain features (classify within mobility) 
• Total power between a band of frequencies, energy, and entropy



Machine Learning Algorithms

• Hierarchical models is a two-step process 
• Support Vector Machines, Naïve Bayes, or Decision Trees to detect 

mobility from other physical activities
• Use a joint classification algorithm such as Dynamic Time Warping 

(DTW) combined with Naïve Bayes to detect a mobility mode within 
the larger activity of mobility [7]. 

• DTW algorithm will allow for personalizing the algorithms to 
specific waveforms from wearable sensors collected during 
patterns of modified gait or mobility.

7. Berndt and Clifford 1994



Pilot Evaluation of Framework

• Two investigators without SCI traveled 15m with five assistive 
devices while simulating walking or wheelchair propulsion 
similar to an individual with SCI
• Wheelchair, crutches, walker, quad cane and single tip cane. 

• Data was collected from SenseWear armbands for five 
commonly used assistive technologies
• Individuals wore four armbands on each of their ankles and wrists

• Two armbands were attached to the assistive devices. 



Biomechanical Patterns of Assisted Mobility
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Figure 5: Resultant acceleration from sensors placed on ankle, wrist, 
and assistive technology (AT) for various mobility modes. X and Y 
axes represent samples and acceleration (0-4 m/s2), respectively.



Classification

Mobility
• Classification accuracy using Naïve Bayes and Decision Tree 

algorithms for four features varied from 87.4% to 97.6% for 
individual and combined devices.

• Multiple evaluations including 10-fold CV and 50%-CV were 
performed to assess within-subject classification accuracy. 

Mobility Modes 
• Seven features classified six mobility-based activities with an 

accuracy ranging from 88.5% to 90.6%. 



DTW

Figure 6: Resultant acceleration from a wrist sensor for wheelchair propulsion (left) and 
cane use (right). X and Y axes are samples and acceleration in m/s2, respectively.



DTW

Figure 7: DTW for each propulsion cycle (red x) or walk with 
a cane (blue   ). Y axis represents distance in m/s2.



Discussion

• Feature data obtained from armbands worn on the body or placed on the assistive 
technology could detect mobility and mobility modes in individuals during 
locomotion. 

• Algorithms such as DTW can be used to detect biomechanical patterns for various 
mobility modes (canes, crutches, and wheelchairs). 

• Further evaluation of this framework is necessary in large number of individuals 
who have a varied level of injury and have a complete or an incomplete SCI. 

• Sensor on the assistive technology improved overall classification accuracy as it 
provided complementary information to wrist or the ankle movement. 



Discussion

• The proposed framework has the potential to assist researchers to study complex 

mobility in the community and allow clinicians to transition individuals with SCI 

from one mobility mode to another.

• Improved mobility can lead to better treatment outcomes and quality of life [3]. 

• Complex mobility patterns, detected by personalized algorithms, can be used to 

adaptively provide rehabilitation and physical activity interventions in the 

community. 

3. Hiremath et al. 2017
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