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Motivation

e Combine different sources of information to improve over state-of-the-art collaborative filtering

approaches in recommendation

e Address cold start and concept drift, which affect collaborative filtering

Recommender systems

Modurec

_ _ Rating Matrix R
Goal: Matrix reconstruction ,

e Rows, columns — Users, items
e Very few known values (less than 1% of entries)

e Many items with few users, few items with many
users

Two main solving strategies

Content filtering

Read by user

e Recommend similar items to the ones the user

liked ad
e Requires prior info on items (e.g. movie genre, \

lead actor...)

Similar articles

IR — it
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e This info provides limited information

Recommended
to user

e Performance does not scale with data

Collaborative filtering bty bth e
e Recommendation based on user with similar rat- ré_; r%
Ing history
e Performance scales with data Siilar users O
e Rich information based on user behavior /..
e Susceptible to cold start and concept drift E:_i

Read by her,
recommended to him!

Autorec

First approach based on autoencoders (latent factor model) [1]

Input: the rating matrix, with zeros for the unknown entries

Output: reconstructed rating matrix, with all entries filled with the model predictions
H = c(RWg¢pnc + bene)

R — deec + bdec

The loss is calculated only for known entries

i e e

Cold start and concept drift

e Our proposal: Address cold start and concept drift within a collaborative setting
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e (Create 3 feature maps by normalizing the timestamps wrt user/item/platform first rating

e Use fully-connected layers (32 and 1 hidden units) that are applied rating-wise
Feature-wise Linear Modulation (FiLM) [3]

e Used to combine time and rating information

e Only 3 free parameters

e Much more expressive than concatenation

R, =aR+ BT +~+yR- T’

Bilinear encoder
e (Combines the user and item features into a feature matrix of the same shape as R;
X' =X;0Xx"
Adaptive feature modulation
e Adds the user/item feature information

e Uses a importance matrix to leverage when the feature information is most valuable (i.e. cold
start)
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R =A-R,+(1-A) X’

Autoencoder input dropout
e Denoise the sparse signal received by the user/item.

e |t allows both explicit minimization of the prediction error on unobserved ratings, and the recon-
struction error on observed ratings

Resulis

Cold start

e Bad performance on new users or items due to
lack of ratings

e (Could stop new users from joining the platform

Concept drift

e Bad performance on older users or items due to
distribution shifts over time [2]

Ablation and comparison with state of the art
e Average RMSE recommendation results on several MovieLens datasets

e We use Modurec_ [DFT] as the nomenclature for our model

— D = with autoencoder dropout; F = with user and item features module; T = with time module

Dataset | GRALS sRGCNN GC-MC STAR CF-NADE Sparse TimeSVD++ I-Autorec™ | Modurec Modurec Modurec
-GCN FC flipped” D DT DFT
ML-100K | 0.945 0.929 0.905 0.895 — — 0.890 0.908 0.905 0.887 0.887
ML-1M - - 0.832  0.832 0.829 0.824 0.842 0.831 0.826 0.821 0.821
ML-10M - - 0.7771  0.770 0.771 0.769 0.749 0.782 0.789 0.777 0.779

Cold start evaluation
e Evaluate on specific scenarios:
- Few ratings: both |O; ;| and |O,, ;| are in the bottom quantile
— Many ratings: both |O; ;| and |O,, ;| are in the top quantile
e Different architectures:

— Nothing: Remove the bilinear encoder and the adaptive combiner (no user or item features
are used).

— Static: Use a much simpler combiner instead of our adaptive combiner. It is characterized by
the following relation: R" = aR; + (1 — o) X', where « is a scalar trainable parameter.

— Adaptive: Use the adaptive feature modulation.

Dataset Algorithm  Few ratings  Many ratings
Nothing 1.6093 0.8371
ML-100K Static 1.6000 0.8417
Adaptive 1.3412 0.8380
Nothing 1.1481 0.7895
ML-1M Static 1.1457 0.7900
Adaptive 1.1360 0.7897
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