Orbital Angular Momentum-Based Two-Dimensional Super-Resolution Targets Imaging

Authors: Rui Chen¹, Wen-xuan Long¹, Yue Gao² and Jiandong Li¹

¹ State Key Laboratory of Integrated Service Networks
Xidian University, Xian, China

² School of EE and CS
Queen Mary University of London, E1 4NS, U.K.
CONTENTS

1. INTRODUCTION

2. OAM-BASED RADAR SYSTEM MODEL

3. 2-D SUPER-RESOLUTION TARGETS IMAGING

4. CONCLUSIONS
Since the discovery in 1992 that vortex light beams can carry orbital angular momentum (OAM) [1], significant research effort has been focused on the OAM of vortex electromagnetic waves [2], [3]. The phase front of vortex electromagnetic wave rotates with azimuth exhibiting a helical structure $e^{j\alpha \phi}$ in space as shown in the picture on the left.
Radar Application

The helical phase of vortex electromagnetic wave can be seen as multiple plane electromagnetic waves illuminating from continuous azimuth simultaneously.

Achieves angular diversity without relative motion or beam scanning.

Radar target detection model

Azimuth estimation algorithm

Back projection algorithms
FFT algorithms
2-D algorithms
MUSIC algorithm
MISO OAM radar targets detection mode

Electric field vector

\[
E_s(r) = -j\mu_0 \omega dN e^{ikr} e^{i\alpha\varphi} \frac{e^{-\alpha}}{4\pi r} i^{-\alpha} J_\alpha(kR\sin\theta)
\]

When \(kR\sin\theta \gg 1 \),

\[
J_\alpha(kR\sin\theta) \approx \sqrt{\frac{2}{\pi k\alpha \sin \theta}} \cos \left(kR\sin\theta - \frac{\alpha\pi}{2} - \frac{\pi}{4} \right)
\]

Received echo signal

\[
s(k, \alpha) = \sum_{m=1}^{M} \sigma'_m e^{i2kr_m} e^{i\alpha\varphi_m} J_\alpha(kR\sin\theta_m)
\]

The \(N \) array elements are located uniformly along the perimeter of a circle and are fed with the same input signal but with successive phase shifts \(\phi_n = \alpha \varphi_n = \alpha \cdot \frac{2\pi n}{N}, n = 0, 1, 2, \ldots, N - 1 \). Thus, after a full turn the phase has the increment of \(2\pi\alpha \).
2-D SUPER-RESOLUTION TARGETS IMAGING

Algorism Principle

- Reduced sensitivity to array perturbations
- Improved performance
- Reduced computational load
- Freedom from array calibration

ESPRIT
Rotational Invariance

2-D super-resolution targets detection based on ESPRIT algorithm

Estimation of Target Range

\[
s(k_p) = \sum_{m=1}^{M} \sigma_m' \alpha(k_p R \sin \theta_0) e^{i2\pi km}
\]
Estimation of Target Range

The echo signal samples

\[
x(k) = [s(k_1)/J_0(k_1 R \sin \theta_0), s(k_2)/J_0(k_2 R \sin \theta_0), \ldots, s(k_p)/J_0(k_p R \sin \theta_0)]^T = A_r \sigma + n
\]

The covariance matrix

\[
R_x = E[x(k)x^H(k)] = A_r R_\sigma A_r^H + \rho_n \Lambda_j
\]

Where

\[
A_r = \begin{bmatrix}
e^{i2k_1r_1} & e^{i2k_1r_2} & \cdots & e^{i2k_1r_M} \\
e^{i2k_2r_1} & e^{i2k_2r_2} & \cdots & e^{i2k_2r_M} \\
\vdots & \vdots & \ddots & \vdots \\
e^{i2k_Pr_1} & e^{i2k_Pr_2} & \cdots & e^{i2k_Pr_M}
\end{bmatrix}
\]

\[
\sigma = [\sigma'_1, \sigma'_2, \ldots, \sigma'_M]^T
\]

\[
n = [n_1/J_0(k_1 R \sin \theta_0), n_2/J_0(k_2 R \sin \theta_0), \ldots, n_P/J_0(k_P R \sin \theta_0)]^T
\]

\[
\Lambda_j = \text{diag}\{J_0^{-2}(k_1 R \sin \theta_0), J_0^{-2}(k_2 R \sin \theta_0), \ldots, J_0^{-2}(k_P R \sin \theta_0)\}
\]

\[
R_\sigma = E[\sigma \sigma^H]
\]
Estimation of Target Range

Singular Value Decomposition (SVD) Algorithm

Eigenvalue Decomposition:

\[\mathbf{R}_x = \mathbf{Q}\Lambda\mathbf{Q}^H \]

Where

\[\Lambda = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_M\} \]

Eigenvalue Decomposition:

\[\mathbf{R}_x\mathbf{q} = \lambda_{\max}\mathbf{q} \]

Where

\[\mathbf{q} = [q_1, q_2, \ldots, q_P]^T \]

Reconstruct the Covariance Matrix

\[\mathbf{R}^f = \begin{array}{cccccc}
q_1 & q_2 & q_3 & \cdots & q_{P-i+1} \\
q_2 & q_3 & q_4 & \cdots & q_{P-i+2} \\
q_3 & q_4 & q_5 & \cdots & q_{P-i+3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_i & q_{i+1} & q_{i+2} & \cdots & q_P \\
\end{array} \]
Estimation of Target Range

The steps of target range estimation

(i) Calculate the eigenvector q corresponding to the largest eigenvalue of the covariance matrix R_X.
(ii) Reconstruct R_f based on q.
(iii) Perform SVD on R_f as $R_f = \hat{U}\Sigma\hat{V}^H$

Where \hat{U} is an $i \times i$ unitary matrix and \hat{V} is a $(P - i + 1) \times (P - i + 1)$ unitary matrix. Then, we can obtain signal subspace \hat{U}_s that is the part of \hat{U} corresponding to M large singular values containing distance information of M targets.
(iv) Construct new matrices \hat{U}_1 taking the first $i - 1$ rows of \hat{U}_s and \hat{U}_2 taking the last $i - 1$ rows of \hat{U}_s.
(v) Calculate $\Psi = (\hat{U}_1^H\hat{U}_1)^{-1}\hat{U}_1^H\hat{U}_2$
(vi) Perform eigenvalue decomposition on Ψ as $\Psi = \hat{Q}\Lambda_r\hat{Q}^{-1}$.

Where $\Lambda_r = \text{diag}\{e^{i2r_1}, e^{i2r_2}, \ldots, e^{i2r_M}\}$
Estimation of Target Azimuth

The echo signal samples

\[y(\alpha) = [s(\alpha_1)/J_{\alpha_1}(k_p R \sin \theta_0), s(\alpha_2)/J_{\alpha_2}(k_p R \sin \theta_0), \ldots, s(\alpha_Q)/J_{\alpha_Q}(k_p R \sin \theta_0)]^T = A_\varphi \mathbf{a} + \mathbf{m} \]

Where

\[
A_\varphi = \begin{bmatrix}
e^{i\alpha_1\varphi_1} & e^{i\alpha_1\varphi_2} & \cdots & e^{i\alpha_1\varphi_M} \\
e^{i\alpha_2\varphi_1} & e^{i\alpha_2\varphi_2} & \cdots & e^{i\alpha_2\varphi_M} \\
\vdots & \vdots & \ddots & \vdots \\
e^{i\alpha_Q\varphi_1} & e^{i\alpha_Q\varphi_2} & \cdots & e^{i\alpha_Q\varphi_M}
\end{bmatrix}
\]

\[\mathbf{a} = [a_1(k_p), a_2(k_p), \ldots, a_M(k_p)]^T, \quad a_m(k_p) = \sigma_m e^{i2k_pr_m} J_\alpha(k_p R \sin \theta_m) \]
Numerical Simulation and Results

Simulation Data

\[r_1 = 40m, r_2 = 45m, r_3 = 50m \]

\[(\phi_1, \theta_1) = (10^\circ, 70^\circ), (\phi_2, \theta_2) = (15^\circ, 70^\circ), (\phi_3, \theta_3) = (20^\circ, 70^\circ) \]

Discrete frequencies: 9.024GHz to 9.979GHz

Wave number: \(k = 189, 190, \ldots, 209 \)

*OAM modes: \(\alpha = -16, -15, \ldots, 15 \)
Both MUSIC and ESPRIT algorithms-based methods can fulfill 2-D imaging of three close point targets at higher SNR, however, ESPRIT algorithms-based methods can provide the positions of targets directly instead of searching spectrum peaks. Furthermore, at lower SNR ESPRIT method can still distinguish three point targets while only one or two blunt peaks could be seen by MUSIC method. It follows that the proposed ESPRIT algorithm-based method is more robust to the MUSIC algorithm-based method.
CONCLUSIONS

ESPRIT algorithm-based 2-D OAM radar targets detection method shows the 2-D super-resolution capability of OAM-based radar. In contrast to conventional algorithm, both MUSIC algorithm-based radar targets detection and ESPRIT algorithm-based OAM radar targets detection belong to super-resolution imaging methods. Meanwhile, our proposed ESPRIT algorithm-based 2-D OAM radar targets detection method further outperforms MUSIC.

THANKS!
References