PROBLEM DECOMPOSITION

Each node n adopts a set-theoretic approach by considering that the unknown parameter vector $\theta \in C_n$, where C_n is some proper, possibly non-convex, constraints set.

In this work we model such sets as

$$C_n = \bigcup_{k=1}^{k_n} S_n, k,$$

where S_n, k denote convex sets and k_n is the number of such sets at node n, used to construct the non-convex set C_n.

It constitutes a particular form of a non-convex feasibility problem.

PROBLEM FORMULATION

Consensus Problem P: Find $\theta \in C = \bigcap_{n=1}^{N} C_n$, where $C_n = \bigcup_{k=1}^{k_n} S_n, k$, are non-convex sets, expressed as unions of the convex sets S_n, k.

NUMERICAL RESULTS

- $N = 200$ nodes, uniformly deployed in the unit square (40 different realizations). A source is placed at $(35,35)$. The signal is received directly and via two reflections.
- Various communication ranges were tested, only realizations that resulted to connected graphs were considered. Nodes perform 6000 strategy changes.
- The average (across nodes and runs) probability for selecting the correct sets is given.

We can see that, in all cases, the probability reaches the value 1, when the communication range is high enough, i.e., when the communication graph becomes more strongly connected.

1. AT A GLANCE

- Distributed estimation of a parameter vector in a network of sensor nodes with ambiguous measurements is considered.
- Non-convex constraint sets may be required at the nodes, in order to accurately model the local ambiguities.
- The non-convexity is treated by expressing the involved non-convex sets as unions of convex sets, such that, for each node, only one such convex set is actually relevant.
- The problem of selecting the relevant sets is modelled as a non-cooperative game, a potential function is derived, and an algorithm is proposed.

2. MOTIVATING EXAMPLE AND MODELING

- Consider a scenario in which two (or more) nodes utilize Angle of Arrival (AoA) measurements to localize a source, in an environment where reflections are present.
- Some nodes compute multiple AoAs, however, only one is relevant to the source of interest.
- Each node n adopts a set-theoretic approach, by considering that the unknown parameter vector $\theta \in C_n$, where C_n is some proper, possibly non-convex, constraints set.

3. PROBLEM FORMULATION

Consider a non-cooperative game in strategic form:

- The set of players is the set of nodes N. Each player has an action set $A_n = \{S_{n,1}, S_{n,2}, \ldots, S_{n,k_n}\}$.
- A strategy $\alpha_n \in A_n$, for node/player n is the selection of one of its convex sets.
- A strategy profile α is a selection of strategies, one for each player. Also, $\alpha \in \mathcal{A} = A_1 \times A_2 \ldots A_N$, and $\alpha = (\alpha_n, A_n)$.

Utility function at node/player n with neighbourhood N_n:

$$u_n(\alpha) = \sum_{k \in N_n} I(\alpha_n, \alpha_k),$$

where $I(S_n, S_k)$ is an indicator function defined as

$$I(S_n, S_k) = \begin{cases} 1, & \text{if } S_n \cap S_k \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

It counts the number of neighbours that have selected a set with non-convex intersection with the set selected by node n.

4. PROBLEM DECOMPOSITION

Assumption A1: The intersection C is non-empty. Furthermore, there exists exactly one set S_{n, t_n} for each node n with

$$S_{n, t_n} \cap C \neq \emptyset.$$

In other words, for each agent, there exists exactly one convex set, say S_{n, t_n} (selected among all $S_{n, k}$ sets), whose intersection with all the other sets of the node is non-empty.

When Assumption A1 holds, the considered problem is equivalent to solving the following two sub-problems:

- **Sub-problem P1:** Identify the sets S_{n, t_n}, $n \in N$, and
- **Sub-problem P2:** Compute set $\theta \in S_{n, t_n}$.

Sub-problem P2 has been extensively studied in literature, and can be solved by using the projections onto convex sets (POCS) approach.4 The focus here is on sub-problem P1.

5. A NON-COOPERATIVE POTENTIAL GAME FOR SUB-PROBLEM P1

Consider a non-cooperative game in strategic form:

- The set of players is the set of nodes N. Each player has an action set $A_n = \{S_{n,1}, S_{n,2}, \ldots, S_{n,k_n}\}$.
- A strategy $\alpha_n \in A_n$, for node/player n is the selection of one of its convex sets.
- A strategy profile α is a selection of strategies, one for each player. Also, $\alpha \in \mathcal{A} = A_1 \times A_2 \ldots A_N$ and $\alpha = (\alpha_n, A_n)$.

Utility function at node/player n with neighbourhood N_n:

$$u_n(\alpha) = \sum_{k \in N_n} I(\alpha_n, \alpha_k),$$

where $I(S_n, S_k)$ is an indicator function defined as

$$I(S_n, S_k) = \begin{cases} 1, & \text{if } S_n \cap S_k \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

Following the work in', it can be proven that the function $\phi : A \rightarrow \mathbb{R}$ defined as

$$\phi(\alpha) = \sum_{n \in N} \sum_{k \in N_n} \frac{I(\alpha_n, \alpha_k)}{2},$$

is a so-called exact potential function.b An approach known as Spatial Adaptive Play (SAP) can be used. According to this method, the nodes employ probabilities for their sets (strategies), which are updated from time $t-1$ to time t according to the rule

$$p_n(t, \alpha_n) = \frac{\exp(\beta q_n(\alpha_n, \alpha_n(t-1)))}{\sum_{\alpha_k \in A_n} \exp(\beta q_n(\alpha_n, \alpha_n(t-1)))},$$

where $\beta \geq 0$ is the so-called exploration parameter, that controls how likely the players are to select a suboptimal strategy.

In a potential game where all players utilize SAP, the stationary distribution gives maximum probabilities to the strategies that jointly maximize the potential function.c

6. NUMERICAL RESULTS

- $N = 200$ nodes, uniformly deployed in the unit square (40 different realizations). A source is placed at $(35,35)$. The signal is received directly and via two reflections.
- Various communication ranges were tested, only realizations that resulted to connected graphs were considered. Nodes perform 6000 strategy changes.
- The average (across nodes and runs) probability for selecting the correct sets is given.

We can see that, in all cases, the probability reaches the value 1, when the communication range is high enough, i.e., when the communication graph becomes more strongly connected.
