A PARTIALLY COLLAPSED GIBBS SAMPLER FOR UNSUPERVISED NONNEGATIVE SPARSE SIGNAL RESTORATION

M.C. Amrouche, H. Carfantan, J. Idier

1. Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS/UPS/CNES, Toulouse, France
2. Laboratoire des Sciences du Numérique de Nantes, CNRS/ECN, Nantes, France

Abstract

We introduce a new strategy, based on the Bernoulli-Generalized-Hyperbolic prior, to reconcile nonnegativity constraint with efficient sampling methods using partially collapsed Gibbs sampling (Marginalisation) for unsupervised nonnegative sparse signal restoration.

1. Nonnegative Sparse Signal Restoration

Problem statement

Goal: Find the sparse nonnegative vector \(\mathbf{x} \)

\[
J(\mathbf{x}) = \| \mathbf{y} - \mathbf{Hx} \|^2 \quad \text{s.t.} \quad \| \mathbf{x} \| \leq S, \quad x_k \geq 0 \quad \forall k
\]

→ Stochastic sampling: probabilistic hierarchical models.

Unsupervised case, and \(\mathbf{H} \) is highly correlated.

2. Available method: BTG Sampler

Bernoulli-Truncated-Gaussian prior \([1]\)

Let \(q \) binary variables such that \(\sum q_k = \| \mathbf{x} \|_0 \).

\[
\begin{align*}
q_k \in \{0, 1\} \\
\Pr(q_k = 1) = \xi
\end{align*}
\]

\[
\begin{align*}
x_k | q_k = 1 &\sim N(0, \sigma^2) \\
x_k | q_k = 0 &\sim \delta(x_k)
\end{align*}
\]

where \(N^+ \) is the truncated Gaussian.

\(\beta \) controls the skewness of the distribution (i.e., \(P(x_k \leq 0 | q_k = 1) \)).

3. Contribution: BGH Sampler

Bernoulli-Generalized-Hyperbolic prior (BGH)

\[
\begin{align*}
q_k \in \{0, 1\} \\
\Pr(q_k = 1) = \xi \\
x_k | q_k = 1 &\sim GH(\nu, \beta) \\
x_k | q_k = 0 &\sim \delta(x_k)
\end{align*}
\]

where \(\nu_{\beta} = \min_{\nu, \beta} TV(GH(\nu, \beta), N^+(0, 1)) \)

\(p(\mathbf{x}) \propto \exp \left(-\frac{1}{2\sigma^2} \| \mathbf{y} - \mathbf{Hx} \|^2 \right) p(\mathbf{q}) P(\mathbf{q} | \xi) \)

\(p(\mathbf{q}) = \frac{1}{2^S} \binom{S}{\sum q_k} \)

\(p(x_k | q_k = 1) \propto \exp \left(-\frac{1}{2\sigma^2} \| \mathbf{y} - \mathbf{Hx} \|^2 \right) \frac{\exp \left(-\frac{1}{2\beta^2} \| \mathbf{x} \|_2^2 \right)}{\int \exp \left(-\frac{1}{2\beta^2} \| \mathbf{x} \|_2^2 \right) d\mathbf{x}} \)

\(\mathbf{x} \) is efficiently marginalizable from \(p(x_k, w, q_k | \mathbf{y}, \theta) \).

for each \(k \)

Sample \(q_k | q_{-k}, x_{-k}, \theta, \mathbf{y} \) (Bernoulli)
Sample \(x_k | q_k, x_{-k}, \theta, \mathbf{y} \) (Truncated-Gaussian)

BGH-PCGS

for each \(k \)

Sample \(q_k, w_k | q_{-k}, w_{-k}, \theta, \mathbf{y} \) (from \(p(q_k, w_k | \mathbf{y}, \theta) \))
Sample \(x_k | q_k, w_k, \theta, \mathbf{y} \) (Gaussian, of size \(L = \| \mathbf{z} \|_0 \))
Sample \(\theta | q_k, x_k, w_k, \mathbf{y} \)

Efficient sampling using PCGS \([3]\)

4. Experiment

4.1 Sparse Decomposition

- \(\mathbf{x}^* \) BTG sequence.
- Noise level (SNR = 12 dB).
- Unsupervised scenario.
- For the BGH: \(\beta = 150 \).

4.2 Convergence Monitoring \([4]\)

MPSRF using \(r = 10 \) independent Markov chains.

Results

\(\text{MPSRF} \) w.r.t time

\(\text{Computing Time (s)} \)

Nonnegative restoration + Efficient sampling using PCGS.

5. Future Work

Approximate other models for nonnegativity:
- Bernoulli-Exponential.
- Exact decomposition: unconstrained case
- Bernoulli-Laplace, Bernoulli-Cauchy.
- Automatic tuning of parameter \(\beta \).

References