

SYMMETRY-BASED GRAPH FOURIER TRANSFORMS FOR IMAGE REPRE

<u>Alessandro Gnutti^{*}, Fabrizio Guerrini^{*}, Riccardo Leonardi^{*} and Antonio Ortega^{**}</u> *Department of Information Engineering, CNIT – University of Brescia. Email: {firstname.lastname}@unibs.it **Department of Electrical Engineering, University of Southern California, Los Angeles, USA. Email: antonio.ortega@sipi.usc.edu

<u>Overview</u>
 > In block-wise transform coding schemes > DCT: asymptotically equivalent to the KLT of a first order Markov process > In this work: proposal for a set of Symmetry-Based Graph Fourier Transforms (SBGFTs) > Totally or partially symmetric grid > Approximation ability analysis > Natural images > Residual signals (taken from intra-prediction in HEVC) > Results: the set of SBGFTs markedly outperforms the DCT → notable statistical matching with data
Preliminaries
In Graph Signal Processing, a signal f is defined on a graph G = {V, E, W} Set of vertices V = {1,2,, N} Set of edges E Weighted adjacency matrix $W = \begin{cases} w_{ij} & if \exists e(i,j) \\ 0 & if \not \exists e(i,j) \end{cases}$
Example of graph.
Naming D the diagonal degree matrix of G Graph Laplacian matrix $L = D - W$ Eigen-decomposition of L such that $L = T\Lambda T^{-1}$ Graph Fourier Transform $F = Tf \leftrightarrow f = T^{-1}F$
Signal on a graph (left) and the corresponding GFT in the graph spectral domain (right)

- \succ For each 4x4 image block all the 41 SBGFTs
- \succ Non-linear approximation (keeping the K

intra-prediction in HEVC (four video sequences)

- largest coefficients in modulus are kept)
- The optimal SBGFT is chosen such that

- > Next:

UNIVERSITY OF BRESCIA

USCUniversity of Southern California

vs graph index entropy (horizontal prediction)

Performance consistent for each mode The entropic rates (related to the signaling) overhead) are considerably lower than the previously considered 6 bits per block Cardinality of the set can be reduced removing irrelevant transforms (based on the examined prediction mode)

Future (current) work

 \geq Extension to 8x8 symmetric grids Constraint: choose the associated SBGFTs so that fast implementations exist Simulation of a complete image/video coder Uniform quantization with dead-zone instead of non-linear approximation $\succ min\{J\} \rightarrow J = D + \lambda(R_G + R_c)$

Graph index entropy

Non-zero coefficient (location and level) entropy

 $> R_c$ ad hoc for each graph Comparison with JPEG, JPEG2000, intraprediction followed by DCT (HEVC), ... > Promising performance

> > Methods to speed up the graph choice > Graph learning with respect to the weights (fixed topology) Better understanding of the relation between data (before and after quantization) and graphs