Activity Video Summarization Based on Salient Dictionary Learning

- Each video frame is described and represented as a single vector, using an Improved Fisher Vector (IFV) aggregation approach.
- The CSSP is employed as a reconstruction term
- The complete salient dictionary learning objective is the following one:
 \[\min \| D - CC^*D \|_F - \text{gsw} \| p \]

- Notations: \(N \) is the total number of original video frames,
 - \(F \) is the dimensionality of the entire video frame representation
 - \(s \) is a \(N \times \text{dimensional binary video frame selection vector} \)
 - \(p \) is a \(N \)-dimensional video frame pre-computed saliency score vector
 - \(e \) is the user-provided saliency term contribution weight
 - \(c \) is a scaling factor bringing pre-video frame saliency value down to the scale of the reconstruction term
 - \(C \) is the desired extracted key-frame set cardinality
 - \(D \) is the observed \(N \times N \) original data matrix (video frame set)
 - \(E \) is the desired \(F \times C \) summary (key-frame set), constructed using \(s \)
 - The goal is to find the matrix \(C \), with its columns being gated columns of \(D \), that minimizes the objective.
 - In [2], an approximate SVD-based, two stage CSSP algorithm [1] is adopted for solving the problem.
 - Before applying the CSSP algorithm, matrix \(D \) is properly modified in order to take into account a per-video frame saliency measure. In the modified matrix, less salient columns have been scaled down in norm by a degree directly proportional to their saliency and a user-provided saliency term contribution weight.

Regularized SVD-based video frame saliency

- [2] is modified here by replacing the simple saliency measure (employed for precomputing \(p \) with a faster, SVD-based approach. Since the SVD decomposition \(D = U \Sigma V^T \) is already used for the evaluating the reconstructing term (in the CSSP algorithm), the computational overhead of this saliency measure is minimal.
 - First, the singular values of \(D \), lying ordered on the diagonal of \(\Sigma \), are clustered into three groups: large, intermediate, and small. This is achieved using a fast variant of the Jenk’s Natural Breaks Optimization method for one-dimensional clustering, that operates by exploiting a scalar version of the Fisher Ratio.
 - The large and the small singular values are set to zero. Thus the regularized matrix \(\hat{\Sigma} \) is derived.
 - Then, the video matrix is approximately reconstructed: \(\hat{D} = U \hat{\Sigma} V^T \)

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement numbers: 278049 (DOSTEM) and 314067 (IMPART).

Table 1: Mean execution time per video frame (in milliseconds) for all competing methods across all datasets (lower is better).

<table>
<thead>
<tr>
<th>Method</th>
<th>IMPART</th>
<th>IMPART</th>
<th>IMPART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble of Saliency</td>
<td>157.82</td>
<td>210.52</td>
<td>221.68</td>
</tr>
<tr>
<td>IMPART</td>
<td>158.22</td>
<td>210.86</td>
<td>222.01</td>
</tr>
<tr>
<td>IMPART</td>
<td>158.52</td>
<td>211.12</td>
<td>222.26</td>
</tr>
<tr>
<td>IMPART</td>
<td>158.82</td>
<td>211.42</td>
<td>222.50</td>
</tr>
</tbody>
</table>

References