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In brief

This study is about deriving a fully distributed
method for training a constrained-form SVM.
We present the first algorithm of this kind.

Our algorithm draws on our recent approach,
based on the Douglas-Rachford method, for
solving network-structured problems.

We offer a new epigraphical projection result,
which provides an efficient implementation of
the kernel version of our algorithm—efficient,
because it involves only closed-form steps.

Our approach is an effective strategy for fully
distributed nonlinear classification.

Introduction

Objective To have m networked agents learn to classify

the objects of a setX into two classes, ±1, training an SVM.

The task involves using a dataset of ` labeled examples,

(x1, y1), . . . , (x`, y`), to find a function h: X → R whose

sign yields the labels. This function is parameterized by a

vector w in a real Hilbert spaceH and by a real number b,

and is defined through a mapping φ. For an object x, the

value of h is 〈φ(x),w〉 + b. In constrained form, the SVM

entails finding h by solving, for an ε > 0, the problem

min
(w,b)∈H×R

‖w‖ s.t.
∑̀
k=1

max{0,1−ykh(xk;w,b)} ≤ ε.

Novelty While the agents know m and ε, they only know

the dataset collectively, each agent i knowing its part as a

vector ai in R` and a linear operator Ai: R` →H , such that

ykh(xk;w,b) =
[ m∑
i=1
(bai+A∗iw)

]
k
.

The dataset is known in the network as a union of subsets,

possibly with overlap.

Expressing the argument of the hinge loss with a sum is not

only useful analytically; it permits arbitrary data splitting

[see the figure above].

Definition An algorithm for solving a problem with data

divided among networked agents is fully distributed when

� each agent communicates only with its neighbors,

� no agent shares its part of the data, and

� all the agents agree on a solution.

Result We derive a fully distributed method for nonlinear

classification with data divided into summands.

Proposed algorithm

Network The network is characterized by each agent i’s
set of neighbors, Ni.

Data Each agent i knows the summands ai and Ai.
Approach Distributed scaled Douglas-Rachford algorithm.

Parameters All the agents know the same two arbitrary

real numbers: γ > 0, and λ ∈ (0,2).
Initialization Each agent i chooses, for each j inNi, three

quantities, z1,ij,0 ∈H , z2,ij,0 ∈ R, and z3,ij,0 ∈ R`.

Main loop At iteration n = 0, 1, . . . , each agent i repeats:

STEP 1 COMMUNICATE

STEP 2 OPTIMIZE

Find the quantity (wi, bi) inH×R and the family (∆vij)j∈Ni

of vectors in R` that minimize

γ‖wi‖2+
1
2

∑
j∈Ni

(
‖wi− z1,ji,n‖2

+(bi− z2,ji,n)2+ ‖∆vij + z3,ji,n‖2
)

subject to

∑̀
k=1

max
{
0,
1
m
−
[
biai+A∗iwi+

∑
j∈Ni

∆vij
]
k

}
≤ ε
m

and assign the minimizers to (wi,n, bi,n) and (∆vij,n)j∈Ni.

STEP 3 UPDATE

For each j in Ni, compute

z1,ij,n+1 = z1,ij,n+ λ
(
wi,n−

1
2
(z1,ij,n+ z1,ji,n)

)
,

z2,ij,n+1 = z2,ij,n+ λ
(
bi,n−

1
2
(z2,ij,n+ z2,ji,n)

)
, and

z3,ij,n+1 = z3,ij,n+ λ
(
∆vij,n−

1
2
(z3,ij,n− z3,ji,n)

)
.

i

j

Receive z1,ji,n, z2,ji,n, and z3,ji,n from

each neighbor j. Convergence

Proposition Suppose that the following conditions hold:

� The network is connected.

� There exists a (w,b) such that the inequality in the

problem holds strictly.

Then, provided that a solution to the problem exists and

that H is finite dimensional, the sequence (wi,0, bi,0),
(wi,1, bi,1), . . . converges to a solution for every i.

Nonlinear classification

Dimensionality reduction To make our method useful for

the nonlinear, and generally infinite-dimensional case, we

assume that neighbors i and j share `ij possibly unlabeled

objects, x̃ij,k ∈ X for k = 1, . . . , `ij, allowing them to form

an operator Rij: R`ij → H . This operator serves to modify

our algorithm so that z1,ij,n and z1,ji,n belong to R`ij.

Modified algorithm Converges, but to an approximation.

STEP 2′ Replace ‖wi− z1,ji,n‖2 with ‖R∗ijwi− z1,ji,n‖2.

STEP 3′ Replace wi,n with rij,n = R∗ijwi,n.

Kernel method By viewing the problem in the second step

of the modified algorithm through duality, we see that φ
occurs only in inner products and thus kernel evaluations,

K(x1, x2) = 〈φ(x1),φ(x2)〉 for some x1, x2 ∈ X. The most

popular kernel is the Gaussian kernel,

however, our algorithm works with any K.

Solving the dual problem We approximate the solution

to the dual problem in Step 2 by using two warm-started

projection-gradient iterations. These iterations depend on

a parameter δi, which is any number in (0,2/Li), where Li
is the Lipschitz constant of the gradient. The projection is

onto a set S and can be determined simply by observation

[see the box above].

Obtaining h Part of the solution to the dual problem is

a vector µi,n in R`, and together with related quantities,

µ̃ij,n ∈ R`ij for j ∈ Ni, it leads not only to (rij,n)j∈Ni, bi,n,

and (∆vij,n)j∈Ni, but also to the local h(x;wi,n, bi,n):

∑̀
k=1
[ai]k[µi,n]kK(x,xk)+

∑
j∈Ni

`ij∑
k=1
[µ̃ij,n]kK(x, x̃ij,k)+ bi,n.

K(x1, x2) = exp
(
−‖x1 − x2‖2/C

)
, C > 0;

Key result

Epigraphical projection

The set S, given by {(µ, ν) ∈ R` × R : 0 ≤ [µ]k ≤ ν ∀k}, is an epigraph.
To efficiently project onto it, we provide the following result:

Proposition Let ū be a vector u in R` with entries sorted in ascending order. Let v ∈ R.
Define

qk = max{0, (v + [ū]k + · · · + [ū]`)/(` + 2 − k)}, k = 1, . . . , `.

Then, at most one of q1 ≤ [ū]1, [ū]1 < q2 ≤ [ū]2, . . . , [ū]`−1 < q` ≤ [ū]` holds. For the
one that is true, define ν′ = qk; if none holds, set ν′ = max{0, v}. The projection of (u, v)
onto S is given by

[µ]k = median{0, [u]k, ν′} ∀k and ν = ν′.

[µ]2 [µ]1

ν (u, v)

S

Simulations

Simple 2D data We consider a network of six agents and a

dataset of 24 points in R2 from two equiprobable classes.

One class corresponds to a normal distribution, and the

other to a mixture of two normal distributions. Each agent

knows a subset of four labeled points. The agents share N
unlabeled points drawn uniformly in an area surrounding

the labeled ones. We set ε, γ and λ to 1 and δi to 1.99/Li.
The agents use a Gaussian kernel with C = 1.8. We observe

agent 1’s decision boundary and the relative error between

(w1,n, b1,n) and the centralized result [see the plots below].
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Our algorithm’s convergence behavior for simple 2D data.

Despite knowing only the circled data, an agent’s decision

boundary ( ) agrees with the centralized result ( )

when the agents share enough random points (see ).

Take-home message Despite having been recognized as a “notoriously complex problem,” training a nonlinear classifier in a fully distributed way can be done efficiently, using a sequence of closed-form steps.

Conclusion

Training a constrained-form SVM in a fully distributed way

is possible. We have illustrated that our strategy, with its

Douglas-Rachford and projection-gradient underpinnings,

can efficiently train a nonlinear classifier that agrees closely

with the centralized result.


