A DISTRIBUTED CONSTRAINED-FORM

This study is about deriving a fully distributed
method for training a constrained-form SVM.
We present the first algorithm of this kind.

Our algorithm draws on our recent approach,
based on the Douglas-Rachford method, for
solving network-structured problems.
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We offer a new epigraphical projection result,
which provides an efficient implementation of
the kernel version of our algorithm—efficient,
because it involves only closed-form steps.

Our approach is an effective strategy for fully
distributed nonlinear classification.

Introduction

Objective To have m networked agents learn to classify
the objects of a set X into two classes, +1, training an SVM.
The task involves using a dataset of £ labeled examples,
(xX1,Y1), ..., (xp,Vp), to find a function h: X — R whose
sign yields the labels. This function is parameterized by a
vector w in a real Hilbert space #{ and by a real number b,
and is defined through a mapping ¢. For an object x, the
value of h is (¢p(x),w) + b. In constrained form, the SVM
entails finding h by solving, for an € > 0, the problem

¢
min w| s.t. max{0,1 — yih(xy,w,b)} < €.
o iin Jw ] gl { Yih(xi )}
Novelty While the agents know m and €, they only know
the dataset collectively, each agent i knowing its part as a
vector a; in RY and a linear operator A;: RY - H , such that

yih(xi;w,b) = | Y (ba; + Afw)| .

=1

The dataset is known in the network as a union of subsets,
possibly with overlap.

Expressing the argument of the hinge loss with a sum is not
only useful analytically; it permits arbitrary data splitting
[see the figure above].

Definition An algorithm for solving a problem with data
divided among networked agents is fully distributed when
each agent communicates only with its neighbors,
no agent shares its part of the data, and
all the agents agree on a solution.

Result We derive a fully distributed method for nonlinear
classification with data divided into summands.

Proposed algorithm

Network The network is characterized by each agent i’s
set of neighbors, N;.

Data Each agent i knows the summands a; and A;.
Approach Distributed scaled Douglas-Rachford algorithm.
Parameters All the agents know the same two arbitrary
real numbers: y > 0, and A € (0, 2).

Initialization Each agent i chooses, for each jin 2N;, three
quantities, z1;j0 € H, z2.ii0 € R, and z3,0 € R’

Main loop At iterationnn =0, 1, ..., each agent i repeats:

STEP 1T COMMUNICATE

Receive zi jin, Z2jin, and z3jin from

each neighbor j.

STEP 2 OPTIMIZE

Find the quantity (w;, b;) in H XR and the family (Av;;) jen;
of vectors in RY that minimize

1
ylwill* +5 3 (lwi = 21inll”
JEN;
+(bi — z2.jin)" + | AV + ZB,ji,n||2>

subject to
d 1 €
Z max{O, — — [biéli + Afwi + Z Avij] } < —
m . k m
k=1 JEN;

and assign the minimizers to (w; », bin) and (AVijn) jen;-

STEP 3 UPDATE

For each j in /N;, compute

1
Z1ijn+l = Z1,ijn + ?\<wi,n — 5(21,1'1,11 + Zl,ji,n)>,

1
Z2ijin+l = Z2,ijn + ?\(bi,n — E(ZZ,ij,n + Zz,ji,n)>, and

1
Z3ijn+l = Z3,ijn + ?\<Avij,n — z(ZB,ij,n — Z3,ji,n)>-

Define dr = max{o0, (v + |i]x + - -

onto S is given by

‘ Key resudt ‘
Epigraphical projection

The set S, given by {(u,v) € R x R: 0 < [ulx < v Vk}, is an epigraph.
To efficiently project onto it, we provide the following result: [ul, [l

Proposition Let i be a vector u in RY with entries sorted in ascending order. Let v € R.
-+ [le) /(€ + 2 — k),

Then, at most one of ¢g; < i), it < g2 < |y,
one that is true, define v’ = gy; if none holds, set v' = max{0, v}. The projection of (u, v)

|1l = median{O, [u]k, v'}

k=1,...,7%.

.., |Utlp—1 < qp < |1i]ly holds. For the

Vk and v = v'.

Convergence

Proposition Suppose that the following conditions hold:
The network is connected.
There exists a (w,b) such that the inequality in the
problem holds strictly.

Then, provided that a solution to the problem exists and

that # is finite dimensional, the sequence (w;o,bio),

(wii,bi1), ... converges to a solution for every i.

Nonlinear classification

Dimensionality reduction To make our method useful for
the nonlinear, and generally infinite-dimensional case, we
assume that neighbors i and j share ¥;; possibly unlabeled
objects, X;jx € X fork =1, ..., ¥;;, allowing them to form
an operator R;;: RYii — #H . This operator serves to modify
our algorithm so that z; ;;, and z; j; » belong to Rt.

Modified algorithm Converges, but to an approximation.
STEP 2" Replace [|lw; — z1jinll* with [Rj5w; — z1 jinll®.

STEP 3" Replace w;, with 7, = R Wi n.

Kernel method By viewing the problem in the second step
of the modified algorithm through duality, we see that ¢
occurs only in inner products and thus kernel evaluations,
K(x1,x2) = (Pp(x71),Pp(x2)) for some x1, X2 € X. The most
popular kernel is the Gaussian kernel,

K(x1,x2) = exp(—|lx1 — x211°/C), C > 0;

however, our algorithm works with any K.

Solving the dual problem We approximate the solution
to the dual problem in Step 2 by using two warm-started
projection-gradient iterations. These iterations depend on
a parameter o0;, which is any number in (0,2/L;), where L;
is the Lipschitz constant of the gradient. The projection is
onto a set S and can be determined simply by observation
[see the box abovel].

Obtaining h Part of the solution to the dual problem is
a vector U;, in RY, and together with related quantities,
fiin € R for j € N;, it leads not only to (¥iin) jen:, Din,
and (Av;jn)jen;, but also to the local h(x;w;n, bin):

Y Cij
> [ailklpinlkK(x, xx) + > > [fijnlkK(x, Xijx) + Din.
k=1 JeEN; k=1

Simulations

Simple 2D data We consider a network of six agents and a
dataset of 24 points in R* from two equiprobable classes.
One class corresponds to a normal distribution, and the
other to a mixture of two normal distributions. Each agent
knows a subset of four labeled points. The agents share N
unlabeled points drawn uniformly in an area surrounding
the labeled ones. We set €, y and A to 1 and o; to 1.99/L,;.
The agents use a Gaussian kernel with C = 1.8. We observe
agent 1’s decision boundary and the relative error between
(W1 n, b1 ) and the centralized result [see the plots below].
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Our algorithm’s convergence behavior for simple 2D data.
Despite knowing only the circled data, an agent’s decision
boundary (——) agrees with the centralized result (---)
when the agents share enough random points (see ——).

Conclusion

Training a constrained-form SVM in a fully distributed way
is possible. We have illustrated that our strategy, with its
Douglas-Rachford and projection-gradient underpinnings,
can efficiently train a nonlinear classifier that agrees closely
with the centralized result.

Take-home message

Despite having been recognized as a “notoriously complex problem,” training a nonlinear classifier in a fully distributed way can be done efficiently, using a sequence of closed-form steps.



