

MOTIVATION

Two core problems within graph signal processing:

- How to sample/select the most representative (few) nodes of the graph?
- How to recover original representation based on these few samples?

One motivating application can be image compression:

- We can represent image as a grid graph with pixels being graph nodes:
- We can recover image by observing only small portion of graph nodes (pixels):

CONTRIBUTION

- we formulate graph sampling problem as Multi-Armed Bandit (MAB) problem
- the sample selection is performed by the "sampling agent" which crawls over the graph and decides whether or not a particular graph node should be sampled

PROBLEM FORMULATION

- given:
 - data graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - data graph specified by the adjacency matrix $\mathbf{W} \in \mathbb{R}^{N imes N}_+$
 - each graph node is associated with label x[i]
 - we are provided with the desired sampling set size which is small compared to the size of the graph: $|\mathcal{M}| \ll |\mathcal{V}|$
- goal:
 - For a fixed sampling set size (sampling budget) $|\mathcal{M}|$ we want to choose the sampling set such that the signal samples $\{x[i]\}_{i \in \mathcal{M}}$ carry maximal information about the entire graph signal.

GRAPH SIGNAL SAMPLING VIA REINFORCEMENT LEARNING

OLEKSII ABRAMENKO AND ALEXANDER JUNG Aalto University, Finland

SAMPLING AS MULTI-ARMED BANDIT PROBLEM

- Given action space with *H* actions $\mathcal{A} = \{1, ...a, ...H\}$.
- Graph is decomposed into *a*-step neighbourhoods based on the shortest path from the current location of sampling agent

• At a given time step *t*, the sampling agent chooses an action $a \in \mathcal{A}$ which refers to the number of hops the sampling agent performs starting at the current node i_t to reach a new node i_{t+1} , which will be added to the sampling set, i.e., $\mathcal{M} := \mathcal{M} \cup$ $\{i_{t+1}\}.$

HOW THE OPTIMAL POLICY IS LEARNED?

• Policy is represented as a probability distribution over arms of the MAB and parametrized by the trainable vector $\mathbf{w} =$ $(w_1, \ldots, w_H)^T$:

$$\pi^{(\mathbf{w})}(a) = \frac{e}{\sum_{b \in \mathcal{A}}}$$

• Reward is negative Mean Squared Error (MSE) of graph signal recovery:

$$MSE := (1/N) \sum_{j \in \mathcal{V}} (x|$$
$$R := -MS$$

• Weights are learned via standard gradient ascent:

$$w_a := \begin{cases} w_a + \alpha R(1 - \pi(a)), a = a_k \\ w_a - \alpha R\pi(a), \forall a \neq a_k \end{cases}$$

for $k = 1..M - 1, a \in \mathcal{A}$

• Training procedure aims at maximizing reward and, respectively, minimizing MSE of graph signal recovery

- filled node current location of sampling agent
- blue, green and red regions represent 1-,2-,3step neighbourhoods
- each *a*-step neighbourhood is associated with the *a*-th arm of the hypothetical MAB machine

 $r[j] - \hat{x}^{\mathcal{M}}[j])^2$

SIMULATION SETUP

SIMULATION RESULTS

0.1

• cluster sizes have geometric distribution with probability of success 0.08 • signal values in *i*-th cluster are all equal to *i* • intra-cluster connection probability p 0.7, \equiv inter-cluster connection probability q = 0.01

