GMM BASED ITERATIVE ENTROPY CODING FOR SPECTRAL ENVELOPES OF SPEECH AND AUDIO

Srikanth Korse¹, Guillaume Fuchs^{1,2}, Tom Bäckström³

¹Fraunhofer IIS, Erlangen, Germany ²International Audio Laboratories, Friedrich-Alexander University (FAU), Erlangen, Germany

³Aalto University, Helsinki, Finland

Introduction

- Spectral envelope models are integral part of speech and audio codecs \bullet
- Common parameterization techniques are linear predictive coding (LPC) parameters and scale factor bands (SFB) coded with vector quantizer (VQ) [1].
- We have recently proposed an alternative: distribution quantization (DQ) \bullet

	VQ	Existing GMM	GMM Proposed
Codebook Size	Function of dimension and bitrate	Independent of dimension and bitrate	Independent of dimension and bitrate
Domain	Original	Transform (KLT)	Original
Component classifier	No	Yes	Νο

Database used for Training	and Testing	TIMIT[2]			
Tested versions	s and resting	VQ, GMM	Λ		
Tested bandwidth		· ·	d (NR) and Mid	oband (NAR)	
Number of Gaussians test	d	Narrowband (NB) and Wideband (WB) 3, 5 and 10 (NB), 5, 10 and 15 (WB)			
	zu				
Objective measure		Log Spectral Distance (LSD) 24 and 33 bits (NB), 36 and 43 bits (WB)			
Bitrate tested		24 anu 55 b	113 (110), 50 and		
BOCOUDO CUCTOPO IROO C	oarch multi-ctad	$\gamma (1)$			
	F and LSF-IS an DQ-ER SD than GMM for similar $(MN2^B)$ and for length and B is the exity of GMM is l	ed to obtain the or almost all point GMM it is $O(N)$ he number of b ower than VQ.	nts ²), where M is t ts.	the number of	
 Logistic distribution appr function. <u>Results:</u> LSF is better than D-LS DQ-LD is a bit better the VQ has slightly better I Number of outliers are Complexity of VQ is O(stages, N is the vector - Complex 	F and LSF-IS an DQ-ER SD than GMM for similar (MN2 ^B) and for length and B is th exity of GMM is l	ed to obtain the or almost all point GMM it is $O(N)$ he number of b ower than VQ. > 4 dB	nts ²), where M is to ts. Bits	the number of Mean SD	
 Logistic distribution appr function. <u>Results:</u> LSF is better than D-LS DQ-LD is a bit better the VQ has slightly better I Number of outliers are Complexity of VQ is O(stages, N is the vector	F and LSF-IS an DQ-ER SD than GMM for similar (MN2 ^B) and for length and B is th exity of GMM is l 2-4 dB 3.87%	ed to obtain the or almost all point GMM it is $O(N)$ he number of b ower than VQ. > 4 dB 0.59%	nts ²), where M is to ts. Bits 24.00	the number of Mean SD 0.68 dB	
 Logistic distribution appr function. <u>Results:</u> LSF is better than D-LS DQ-LD is a bit better the VQ has slightly better I Number of outliers are Complexity of VQ is O(stages, N is the vector - Complex 	F and LSF-IS an DQ-ER SD than GMM for similar (MN2 ^B) and for length and B is th exity of GMM is l	ed to obtain the or almost all point GMM it is $O(N)$ he number of b ower than VQ. > 4 dB	nts ²), where M is to ts. Bits	the number of Mean SD	

(d

Contribution of the current work:

- Iterative GMM approach for entropy coding of spectral envelopes.
- We derive a univariate probability distribution for each parameter using the previously quantized parameters as prior information. The conditional pdf is a scalar GMM.

Multivariate Gaussian Distribution

Assume x can be modelled using Gaussian mixture model (GMM) with M components • such that the probability distribution function is: $f(x) = \sum_{k=1}^{M} \lambda_k f_k(x)$ where $\sum_{k=1}^{M} \lambda_k = 1$

 $f_k(x) = |2\pi\Sigma_k|^{-\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)))$, where Σ : covariance matrix, μ : mean

- The vector x can be divided into 2 parts: x_0 : coded coefficients and x_1 : coefficients yet \bullet to be coded.
- It can be shown that, when x_0 is known, x_1 follows normal distribution with covariance • A_1^{-1} and mean $\hat{\mu}$ but scaled with $\alpha = \frac{e^c |A_1|^2}{\frac{1}{2}}$.
- In other words, the mean and the weights of x_1 are updated depending on the \bullet previously encoded samples. The covariances $A_{k,1}^{-1}$ are depended only Σ_k , hence can be computed offline.

Table 1. Outlier comparison for LSF parameter at 24 bits (NB) and 43 bits (WB).

NB-8dim-33 bits

The algorithm can be stated as follows:

- Encode the first component ξ_0 using the univariate distribution without priors.
- For h = 1 to N-1
 - Derive pdf for ξ_h using ξ_0 to ξ_{h-1} as priors.
 - Encode component ξ_h with the help of arithmetic coding using the univariate pdf obtained.

Fig. 1. Illustration of 2D Gaussian mixture model with 2 Gaussians

Fig. 2. Histogram and probability distribution model of first parameter ξ_0

Fig. 5. Mean Log Spectral distance (LSD) (dB) vs all parameters at 33 bits (NB) and 43 bits (WB).

Fig. 6. Mean Log Spectral distance (LSD) (dB) vs all configurations for LSF, DQ-LD and SFB at NB (24 and 33 bits) and WB (36 and 43 bits).

Conclusion

- We propose an iterative GMM based entropy coder to encode the spectral envelope parameters.

IN COOPERATION WITH

The International Audio Laboratories Erlangen are a joint institution of the Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Fraunhofer Institute for **Integrated Circuits IIS**