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Motivation

ä Physical identifiers are secure and cheap alternatives to storing
secret keys in non-volatile memory.

ä Fine variations of ring oscillator (RO) outputs are used as a
random stationary ergodic source with high entropy.

ä Information-theoretic limits for a “key-binding” (chosen-secret)
scheme, which uses identifier outputs to hide a secret key from
an attacker, are used to evaluate our proposed approaches.

ä The discrete cosine transform (DCT) based transform-coding
approach is shown in [1] to improve RO reliability under varying
environmental conditions.

Main Contributions

ä Our extended transform-coding approach jointly improves
n Decorrelation efficiency,
n Maximum secret-key length,
n Reliability and security of the extracted sequence,
n Hardware cost performance.

ä Design the transform-coding approach and channel codes for
the fuzzy commitment scheme with realistic assumptions, i.e.,

n Highly correlated RO outputs,
n Maximum block-error probability of PB ≤ 10−9.

ä The (secret-key, privacy-leakage) rate pairs for our codes
n (0.1473,0.8527) and (0.1719,0.8281) bits/source-symbol

are better than all previously suggested codes, e.g.,
n (0.0782,0.9218) [2], (0.115,0.885) [3], and (0.1260,0.8740) [3]

bits/source-symbol.
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Consider before transform coding
ä A two-dimensional RO array of size L= r×c and the output

vector random variable X̃L ∼ pX̃L ,
ä Additive white Gaussian noise components Z̃L ∼ pZ̃L ,
ä Noisy RO outputs Ỹ L = X̃L+Z̃L

so that after transform coding we obtain
ä independent and identically distributed binary and uniformly

distributed random vectors
(
XN, Y N),

ä a binary error vector as EN =XN⊕Y N , where Ei ∼ Bern(p) for
i =1,2, . . . ,N.

Capacity Region for Fuzzy Commitment Scheme

Definition
A secret-key vs. privacy-leakage rate pair (Rs ,Rl ) is achievable by
the fuzzy commitment scheme with zero secrecy leakage if, given
any ε >0, there is some N≥1 and an encoder and decoder for
which Rs = log |S|

N and

Pr[S 6= Ŝ]≤ ε (reliability) (1)
I (S;M)=0 (secrecy) (2)
1
N I
(

XN ;M
)
≤ Rl + ε (privacy). (3)

Theorem [4]
The achievable secret-key vs. privacy-leakage rate region for the
fuzzy commitment scheme with a channel PY |X that is a BSC with
crossover probability p, uniformly distributed X and Y , and zero
secrecy leakage is

R={(Rs ,Rl ) : 0≤ Rs ≤ 1−Hb(p),
Rl ≥ 1−Rs} (4)

where Hb(p)=−p logp−(1−p) log(1−p) is the binary entropy
function. This region is optimal only if Rs =1−Hb(p).

Transform Coding Steps
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1 A transform Tr×c(·) (e.g., DCT, discrete Walsh-Hadamard
transform (DWHT), discrete Haar transform (DHT), and
Karhunen-Loeve transform (KLT)) is applied to an array of RO
outputs to reduce correlations.

2 Gaussian distributions are fitted to each transform coefficient
obtained from the RO-output dataset in [5].

3 Histogram equalization converts the probability density of
each coefficient into a standard normal distribution, i.e.,
t̂ = t−µ

σ
, where µ is the mean and σ is the standard deviation.

4 Use the quantizer Q(·) for all k = 1,2, · · · ,2K when extracting
K bits such that Q(t̂) = k if bk−1< t̂≤bk , where

bk = Φ−1
(

k
2K

)
and Φ−1(·) is the quantile function of the

standard normal distribution.

5 Apply Gray mapping and then concatenate the extracted bit
sequences from each coefficient.

Quantizer Selection

ä Define and fix a pb as the crossover probability of the binary
symmetric channel (BSC) PY |X .

ä Define

D(K )= 1
K

∞∫
−∞

∞∫
−∞

(
2K

∑
k=1

Pr[Q(t̂+n̂)=k]HDk(t̂)
)
·pT̂ (t̂)pN̂(n̂)dt̂dn̂

HDk(t̂): the Hamming distance (HD) between the bit
sequences assigned to the k-th interval and to the interval Q(t̂).
N̂: the Gaussian noise in the coefficient after equalization.

ä Determine the number of bits K (pb) extracted from each
coefficient as the maximum K such that D(K )≤pb.

ä Do not use the DC coefficient, known by the attacker.

ä The total number of extracted bits is N(pb) =
L
∑

i=2
Ki (pb).

ä The maximum secret-key length is Smax = (1−Hb(pb)) ·N(pb).

Performance Evaluations

1. Decorrelation Efficiency
DCT DWHT DHT

ηc for 8×8 ROs 0.9978 0.9977 0.9978
ηc for 16×16 ROs 0.9987 0.9988 0.9986

2. Maximum Secret-key Length
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3. Complexity
KLT DCT DWHT DHT
O(N3) O(N2 logN) O(N2 logN) O(N2)

4. Uniqueness and Security: Uniqueness is 0.500 and
HD variance is approximately 7×10−4 for all transforms. They also
pass the NIST randomness tests.

Proposed Error Correction Codes

ä Fix pb =0.06, where Smax is at its maximum.

ä The block-error probability constraint: PB ≤ 10−9.

ä The code-dimension constraint: k ≥ 128.

Proposed Codes
1 The Reed-Muller code C(32,6,16) as the inner code and a

Reed-Solomon code RS(26;28,22,7) as the outer code.
ä The majority logic decoder of the inner code transforms the

BSC(0.06) into a channel with the erasure probability of 6.57×10−5

and the error probability of 4.54×10−6.

ä The bounded minimum distance decoder (BMDD) of the outer code
results in the block-error probability of PB =1.37×10−11.

ä (Rs,Rl)=(0.1473,0.8527) bits/source-bit.

2 A repetition code with block length ni =3 as the inner code and a
binary extended Bose-Chaudhuri-Hocquenghem code with
parameters (256,132,36) as the outer code.

ä The maximum-likelihood decoder of the inner code transforms the
BSC(0.06) into a BSC(0.0104).

ä The BMDD of the outer code results in the block-error probability of
PB =3.48×10−10.

ä (Rs,Rl) = (0.1719,0.8281) bits/source-bit.

ä Both channel codes provide better (secret-key, privacy-leakage) rate
pairs than previously suggested codes (e.g., in [2, 3]).

ä The best possible (Rs,Rl) pair achievable by the fuzzy
commitment scheme from (4) for a BSC(0.06) is
(0.6726,0.3274) bits/source-bit.

ä Better key-leakage rate pairs are thus possible, but these
constructions would result in increased hardware complexity,
which is not desired for internet of things applications.

Discussion

n It would be natural to use iterative decoders in combination
with low density parity check or turbo codes. Hardware
complexity would then increase due to iterations and it is a
difficult task to simulate these codes for PB≤10−9.
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