Reliable Secret-key Binding for Physical Unclonable Functions with Transform Coding

Quantizer Selection

Define

Motivation

- > Physical identifiers are secure and cheap alternatives to storing secret keys in non-volatile memory.
- > Fine variations of ring oscillator (RO) outputs are used as a random stationary ergodic source with high entropy.
- ► Information-theoretic limits for a "key-binding" (chosen-secret) scheme, which uses identifier outputs to hide a secret key from an attacker, are used to evaluate our proposed approaches.
- > The discrete cosine transform (DCT) based transform-coding approach is shown in [1] to improve RO reliability under varying environmental conditions.

Main Contributions

- > Our extended transform-coding approach jointly improves Decorrelation efficiency,
 - Maximum secret-key length,
 - Reliability and security of the extracted sequence,
 - Hardware cost performance.
- > Design the transform-coding approach and channel codes for the fuzzy commitment scheme with realistic assumptions, i.e.,
 - Highly correlated RO outputs,
 - Maximum block-error probability of $P_B \leq 10^{-9}$.
- > The (secret-key, privacy-leakage) rate pairs for our codes
 - (0.1473, 0.8527) and (0.1719, 0.8281) bits/source-symbol

are better than all previously suggested codes, e.g.,

(0.0782,0.9218) [2], (0.115,0.885) [3], and (0.1260,0.8740) [3] bits/source-symbol.

System Model and Fuzzy Commitment Scheme

Consider before transform coding

- > A two-dimensional RO array of size $L = r \times c$ and the output vector random variable $X^L \sim p_{\widetilde{X}L}$,
- > Additive white Gaussian noise components $\tilde{Z}^L \sim p_{\tilde{z}_L}$
- > Noisy RO outputs $\widetilde{Y}^L = \widetilde{X}^L + \widetilde{Z}^L$

DFG

- so that after transform coding we obtain
- independent and identically distributed binary and uniformly distributed random vectors (X^N, Y^N) ,
- > a binary error vector as $E^N = X^N \oplus Y^N$, where $E_i \sim Bern(p)$ for $i = 1, 2, \ldots, N.$

Capacity Region for Fuzzy Commitment Scheme

Definition

A secret-key vs. privacy-leakage rate pair (R_s, R_l) is achievable by the fuzzy commitment scheme with zero secrecy leakage if, given any $\varepsilon > 0$, there is some N > 1 and an encoder and decoder for which $R_s = \frac{\log |\mathcal{S}|}{N}$ and

$\Pr[S eq \hat{S}] \leq \epsilon$	(reliability)	(1)
I(S; M) = 0	(secrecy)	(2)
$\frac{1}{N}I\left(X^{N};M\right)\leq R_{I}+\varepsilon$	(privacy).	(3)

Theorem [4]

Transform Coding Steps

The achievable secret-key vs. privacy-leakage rate region for the fuzzy commitment scheme with a channel $P_{Y|X}$ that is a BSC with crossover probability p, uniformly distributed X and Y, and zero secrecy leakage is

$$C = \{ (R_s, R_l) : 0 \le R_s \le 1 - H_b(p), \\ R_l \ge 1 - R_s \}$$

where $H_{b}(p) = -p \log p - (1-p) \log(1-p)$ is the binary entropy function. This region is optimal only if $R_s = 1 - H_b(p)$.

RO Array rxc $\widetilde{\mathbf{X}}^{\mathbf{L}}$ Post-Processing 0 Ô Transform 🗭 Hist. Bit Alloc. with Quant. Equali. Gray Map rxc

- **1** A transform $T_{r \times c}(\cdot)$ (e.g., DCT, discrete Walsh-Hadamard transform (DWHT), discrete Haar transform (DHT), and Karhunen-Loeve transform (KLT)) is applied to an array of RO outputs to reduce correlations.
- **2** Gaussian distributions are fitted to each transform coefficient obtained from the RO-output dataset in [5].
- **Istogram equalization** converts the probability density of each coefficient into a standard normal distribution, i.e., $\hat{t} = \frac{t-\mu}{\sigma}$, where μ is the mean and σ is the standard deviation.
- **④** Use the **quantizer** $Q(\cdot)$ for all $k = 1, 2, \dots, 2^{K}$ when extracting K bits such that $Q(\hat{t}) = k$ if $b_{k-1} < \hat{t} \le b_k$, where $b_k = \Phi^{-1}\left(\frac{k}{2^K}\right)$ and $\Phi^{-1}(\cdot)$ is the quantile function of the standard normal distribution.
- **(3)** Apply **Gray mapping** and then **concatenate** the extracted bit sequences from each coefficient.

KLT

 $\mathcal{O}(N^3)$

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

German Research Foundation

(bits) 180 Š 160

 $D(K) = \frac{1}{\kappa} \int \int$

- > The total number

Performance Evaluations

240

220

200

140

120

100

(4)

Onur Günlü, Onurcan İşcan, Vladimir Sidorenko, and Gerhard Kramer

{onur.gunlu, vladimir.sidorenko, gerhard.kramer}@tum.de, onurcan.iscan@huawei.com

 \blacktriangleright Define and fix a p_b as the crossover probability of the binary symmetric channel (BSC) $P_{Y|X}$.

$$\left(\sum_{k=1}^{2^{K}} \Pr[Q(\hat{t}+\hat{n})=k] \operatorname{HD}_{k}(\hat{t})\right) \cdot p_{\widehat{T}}(\hat{t}) p_{\widehat{N}}(\hat{n}) \mathrm{d}\hat{t} \mathrm{d}\hat{n}$$

• $HD_k(\hat{t})$: the Hamming distance (HD) between the bit sequences assigned to the k-th interval and to the interval $Q(\hat{t})$. • \widehat{N} : the Gaussian noise in the coefficient after equalization.

> Determine the number of bits $K(p_b)$ extracted from each coefficient as the maximum K such that $D(K) \leq p_b$.

Do not use the DC coefficient, known by the attacker.

er of extracted bits is
$$N(p_b) = \sum_{i=2}^{L} K_i(p_b)$$
.

> The maximum secret-key length is $S_{max} = (1 - H_b(p_b)) \cdot N(p_b)$.

1. Decorrelation Efficiency

	DCT	DWHT	DHT
× 8 ROs	0.9978	0.9977	0.9978
× 16 ROs	0.9987	0.9988	0.9986

2. Maximum Secret-key Length

3. Complexity

DCT	DWHT	DHT
$\mathcal{O}(N^2 \log N)$	$\mathcal{O}(N^2 \log N)$	$\mathcal{O}(N^2)$

4. Uniqueness and Security: Uniqueness is 0.500 and HD variance is approximately 7×10^{-4} for all transforms. They also pass the NIST randomness tests.

Proposed Error Correction Codes

- > Fix $p_b = 0.06$, where S_{max} is at its maximum
- > The block-error probability constraint: $P_B \leq 10^{-9}$.
- > The code-dimension constraint: k > 128.

roposed Codes

- **()** The **Reed-Muller** code C(32, 6, 16) as the inner code and a **Reed-Solomon** code $\mathcal{RS}(2^6; 28, 22, 7)$ as the outer code.
 - > The majority logic decoder of the inner code transforms the BSC(0.06) into a channel with the erasure probability of 6.57×10^{-5} and the error probability of 4.54×10^{-6} .
 - > The bounded minimum distance decoder (BMDD) of the outer code results in the block-error probability of $P_B = 1.37 \times 10^{-11}$.
 - > (R_s, R_I)=(0.1473, 0.8527) bits/source-bit.
- **2** A **repetition** code with block length $n_i = 3$ as the inner code and a binary extended Bose-Chaudhuri-Hocquenghem code with parameters (256, 132, 36) as the outer code.
 - > The maximum-likelihood decoder of the inner code transforms the BSC(0.06) into a BSC(0.0104).
 - > The BMDD of the outer code results in the block-error probability of $P_B = 3.48 \times 10^{-10}$
 - ➤ (R_s, R_I) = (0.1719, 0.8281) bits/source-bit.
- > Both channel codes provide better (secret-key, privacy-leakage) rate pairs than previously suggested codes (e.g., in [2, 3]).
- > The **best possible** (R_s, R_l) **pair** achievable by the fuzzy commitment scheme from (4) for a BSC(0.06) is (0.6726, 0.3274) bits/source-bit.
- > Better key-leakage rate pairs are thus possible, but these constructions would result in increased hardware complexity, which is not desired for *internet of things* applications.

Discussion

It would be natural to use iterative decoders in combination with low density parity check or turbo codes. Hardware complexity would then increase due to iterations and it is a difficult task to simulate these codes for $P_B \leq 10^{-9}$.

References

- [1] O. Günlü, O. İşcan, and G. Kramer, "Reliable secret key generation from physical unclonable functions under varying environmental conditions," in IEEE Int. Workshop Inf. Forensics and Security, Rome, Italy, Nov. 2015, pp. 1-6.
- [2] R. Maes, A. V. Herrewege, and I. Verbauwhede, "PUFKY: A fully functional PUF-based cryptographic key generator," in Cryptographic Hardware and Embedded Sys. Berlin Heidelberg, Germany: Springer-Verlag, Sep. 2012, pp. 302-319.
- [3] S. Puchinger et al., "On error correction for physical unclonable functions," in VDE Int. ITG Conf. Systems, Comm. and Coding, Hamburg, Germany, Feb. 2015, pp. 1–6.
- [4] T. Ignatenko and F. M. Willems, "Information leakage in fuzzy commitment schemes," IEEE Trans. Inf. Forensics and Sec., vol. 5, no. 2, pp. 2337-348,
- [5] A. Maiti et al., "A large scale characterization of RO-PUF," in IEEE Int. Symp. Hardware-Orient. Sec. and Trust, Anaheim, CA, Jun. 2010, pp.

