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Introduction

• The current state of art ADMA beamformers used
in hearing aids have a distortionless response for
a frontal direction (0 degree).

• The ADMA beamformer [1] leads to
distorted/attenuated responses over most of
frequency components when the target signal
comes from non-frontal directions.

• In addition, free field environment is often
assumed in the ADMA beamformer derivation.

• However, in hearing aids, the head shadow effect
does not lead to a free field propagation model,
and this can affect the performance of the ADMA.

• In this work, monaural ADMA designs using two
closely-spaced microphones are introduced.

o The proposed designs have a distortionless
response at arbitrary target directions in the
frontal half-hemisphere.

o The head shadow effect is considered in the
ADMA design, by using anechoic Head-Related
Transfer Function (HRTF) measurements.

o A sub-band or time-frequency derivation for the
algorithms is used, as it typically leads to lower
complexity implementations. Conclusion

• ADMA beamformers for hearing aids using two

closely-spaced microphones are introduced to

have a distortionless response at an arbitrary

target direction in the frontal hemisphere.

• Four variations are proposed by assuming a free

field environment or considering the head shadow

effect.

• The best tradeoff between noise reduction and

target distortion are achieved by HRTF-ADMA-90

and FF-ADMA-90.

(a)                                                       (b)

Fig.1: DMA response using two closely spaced microphones; a) 
polar coordinates b) rectangular coordinates

Proposed Solutions

1. Free field-based ADMA with distortionless
response at arbitrary directions (FF-ADMA-θx)

The ADMA design in [1] is extended to have a
distortionless response at an arbitrary front
hemisphere angle θx degrees instead of 0 degree.

The forward cardioid cf (f,t) equation is:

and the backward cardioid cb(f,t) equation is:

where, y1(f,t) is the noisy signal at the front
microphone, y2(f,t) is the noisy signal at the rear
microphone, f is the frequency , t is the time (frame
index), and T is the propagation delay between the
microphones.
The beamformer output z(f,t) has a null in the back
hemisphere. The null location depends on the value
of β

To achieve a distortionless response (unit gain with
no phase shift) at angle θx degrees over all
frequencies:

2. HRTF-based ADMA with a distortionless
response at arbitrary directions (HRTF-ADMA-
θx)

• In hearing aids, propagation model should include
head shadow effect and other acoustic effects.

• The previous ADMA design with distortionless
response at an arbitrary angle is generalized
using anechoic HRTFs.

• Alternatively, a design similar to the design in [1]
is obtained, but using HRTFs instead of a free
field propagation model. In such case, the design
is only target distortionless for a target at 0
degree.

3. Free field-based ADMA / HRTF-based ADMA
with compensation gain (FF-ADMA-CG / HRTF-
ADMA-CG)
• To mitigate the target distortion generated from

the ADMA with distortionless response at 0
degree in the case of non-frontal targets, a
frequency dependent complex compensation
gain is proposed to be used after the ADMA.

• The aim is to have output target components
after compensation which are the same as the
target components at the frontal microphone .
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Results 
The performance of six different variations of ADMA

designs are tested and compared in Fig.2 under

two acoustic scenarios:
• A target at 90° and a single interferer at 200 degrees.
• A target at 90°, interferers at 225° and 180°, and diffuse-

like noise (14 dB below the target and interferers levels).

Resulting performance metrics show:
• The HRTF-ADMA-90 and the FF-ADMA-90 provide the

best tradeoff in terms of target distortion and noise
reduction.

• The compensation gain approaches provide similar
overall noise reduction compared to the HRTF-ADMA-90
and the FF-ADMA-90, but with more target distortion.

The performance of the FF-ADMA-90 and HRTF-
ADMA-90 designs are compared in details with the
benchmark FF-ADMA [1] under the second
complex acoustic scenario.
• HRTF-ADMA-90 outperforms the FF-ADMA-90 and the

FF-ADMA in terms of SDR and SDmag over almost all
frequency components.

• Both the HRTF-ADMA-90 and FF-ADMA-90 significantly
outperform the FF-ADMA [1] in terms of noise reduction
up to 7 kHz.

Fig. 2:Performance
of ADMA designs
under two acoustic
scenarios in terms
of target distortion
and noise reduction
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Fig.3:Target distortion Fig.4: Noise reduction
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