1. Introduction

- Acquisition of nonregular quarter sampled images [1]
 - Low resolution sensor to record high resolution video data
 - Recording of images with four times higher resolution using same amount of pixels
 - Save data-rate and storage space
- Reconstruction before usage
 - Three-dimensional frequency selective extrapolation (3D-FSE) [2]
 - Support area extends along spatial and temporal neighborhood
 - Compensation by adapted spatial weighting function
- Motion blur due to spatial mismatch along temporal axis

2. 3D Frequency Selective Extrapolation

- Iterative generation of model \(\hat{g}(m, n, p) \) of weighted superimposed Fourier basis functions \(\psi_{k,l,m} \) [2]
- Blockwise processing
- Spatial weighting function to steer influence of data points
- All calculations performed in Fourier domain

3. Proposed Motion Compensated Weighting

- Shifting the center of mass of the weighting function according to the motion in the sequence
- Motion estimation using optical flow [3]
 - Averaging motion vector field to one motion vector per block
 - High reconstruction quality in test sequences

4. Simulations & Results

- Test parameters:
 - 50 frames of each sequence of classes C and D of HEVC testset [4]
 - Block-size of 4×4×1
 - \(\rho = 0.7 \), and \(\delta \) are set to 0.5
 - Borderwidth of 14 in all directions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basketball Pass</td>
<td>30.16 dB</td>
<td>29.70 dB</td>
<td>31.49 dB</td>
<td>31.64 dB</td>
</tr>
<tr>
<td>Blowing Bubbles</td>
<td>29.04 dB</td>
<td>29.04 dB</td>
<td>29.50 dB</td>
<td>30.19 dB</td>
</tr>
<tr>
<td>Blowing Bubbles</td>
<td>22.14 dB</td>
<td>22.14 dB</td>
<td>22.41 dB</td>
<td>22.94 dB</td>
</tr>
<tr>
<td>BQ Mall</td>
<td>28.40 dB</td>
<td>27.30 dB</td>
<td>28.94 dB</td>
<td>30.69 dB</td>
</tr>
<tr>
<td>BQ Mall</td>
<td>31.55 dB</td>
<td>29.81 dB</td>
<td>31.27 dB</td>
<td>31.80 dB</td>
</tr>
<tr>
<td>BQ Mall</td>
<td>25.72 dB</td>
<td>27.12 dB</td>
<td>29.24 dB</td>
<td>29.72 dB</td>
</tr>
<tr>
<td>BQ Mall</td>
<td>28.26 dB</td>
<td>27.08 dB</td>
<td>28.97 dB</td>
<td>30.62 dB</td>
</tr>
<tr>
<td>Average</td>
<td>27.53 dB</td>
<td>26.92 dB</td>
<td>28.73 dB</td>
<td>29.36 dB</td>
</tr>
</tbody>
</table>

5. Conclusion

- Recording of quarter sampled sequences
- Reconstruction of the not directly acquired image areas
- Estimating the average motion per block
- Shifting the spatial weighting function corresponding to the motion
- Compensation of ghosting and blurring caused by motion during the reconstruction
- Highest gains for sequences with much motion
- Gains up to 1.75 dB compared to 3D-FSE

References:
[4] F. Bossen et al., "Common test conditions and software reference con-

ICASSP 2019