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Abstract

This work develops an effective distributed algorithm for the solution of stochastic optimization problems
that involve partial coupling among both local constraints and local cost functions. While the collection
of networked agents is interested in discovering a global model, the individual agents are sensing data
that is only dependent on parts of the model. Moreover, different agents may be dependent on different
overlapping subsets of the model. In this way, cooperation is justified and also necessary to enable
recovery of the global information. In view of the local constraints, we show how to relax the optimization
problem to a penalized form, and how to enable cooperation among neighboring agents. We establish
mean-square-error convergence of the resulting strategy for sufficiently small step-sizes and large penalty
factors. We also illustrate performance by means of simulations.

Introduction

Consider a multi-agent optimization problem consisting of N networked agents, where each agent is
associated with an individual cost function, Jk(w). There have been extensive works in the literature
where effective algorithms have been developed for the distributed solution of constrained optimization
problems of the form:

minimize
w

N∑
k=1

Jk(w), subject to w ∈W1 ∩ · · · ∩WN (1)

where Wk denotes a convex constraint set at node k. In this formulation, each cost Jk(w) is a function
of the same parameter vector, w ∈ RM . However, in many applications such as in distributed wireless
localization [3], minimum-cost flow problems [1], and distributed power systems monitoring [4], the
individual costs Jk(·) may be functions of only a few entries of w; moreover, different agents may be
functions of different subsets of these parameters. Motivated by these scenarios, we consider in this
work a more general problem where we assume that there are L variables, denoted by {w1, w2, . . . , wL}
with each w` ∈ RM`. We also assume that the cost of each agent is a function of only a subset of these
variables.

Problem Formulation

Let Ik denote the set of variable indices that affect the cost of agent k and let wk denote the collection
of variables that affect this agent:

wk , col{w`}`∈Ik ∈ RQk (2)
Qk ,

∑
`∈Ik

M`. (3)

If we stack all variables into a larger L× 1 block vector w , col{w1, w2, ..., wL} ∈ RM , then we are
reduced to determining the solution of the optimization problem:

minimize
w

Jglob(w) ∆=
N∑
k=1

Jk(wk)

subject to w ∈W1 ∩ · · · ∩WN (4)
Since different agents may be influenced by common vectors {w`}, cooperation becomes desirable and
is often necessary to improve accuracy and to ensure that agents reach agreement about the unknown
shared parameters. Figure 1 illustrates the formulation for a simple network. The constraint sets Wk

are generally described by equality and inequality conditions of the form:

Wk =
w : hk,u(wk) = 0, u = 1, ....., Uk

gk,v(wk) ≤ 0, v = 1, ....., Vk
(5)

where {hk,u(·), gk,v(·)} are convex functions. Problem (4) is assumed to be feasible and therefore, a
minimizer exists

wo = col{w1,o, · · · , wL,o} ∆= arg min
w∈W1∩···∩WN

Jglob(w) (6)

It is clear that algorithms that solve (1) can be used to solve (4). For example, this can be achieved
by extending each local variable wk into the longer global variable w. However, this solution method
would require unnecessary communications and memory allocation, and has been observed in sim-
ulations (see [2]) to lead to performance degradation. It is therefore necessary to solve problem (4)
more directly and also more effectively.

Illustration Figure for the Problem Formulation

Figure: A connected network of agents where the local costs depend on different
subsets of the global parameter vector w = [w1, w2, w3, w4, w5, w6].

Penalized Formulation

We first relax problem (4) and replace it by the following penalized form parametrized by a scalar η ≥ 0
(η = 0 for the unconstrained case):

minimize
w

Jglob
η (w) ,

N∑
k=1

Jk,η(wk) (7)

where the individual costs on the right-hand side incorporate a penalty term, and are defined as follows:
Jk,η(wk) , Jk(wk) + ηpk(wk) (8)

with each penalty function in (8) given by

pk(wk) ,
Uk∑
u=1

δEP(hk,u(wk)) +
Vk∑
v=1

δIP(gk,v(wk)) (9)

Here, the terms δEP(x) and δIP(x) denote differentiable convex functions that penalize the violation of
the constraints, namely, they satisfy the requirements:

δEP(x) =
 0, x = 0
> 0, x 6= 0 , δIP(x) =

 0, x ≤ 0
> 0, otherwise (10)

We denote the optimal solution of (7) by:
w? = col{w1,?, · · · , wL,?} ∆= arg min

w1,··· ,wL
Jglob
η (w) (11)

Assumption 1. (Individual costs): It is assumed that the individual cost functions, Jk(wk), are
each twice-differentiable, convex, and have Hessian matrices that are bounded from above:

∇2
wk
Jk(wk) ≤ δkIQk

(12)
Moreover, for every cluster C` there exists at least one agent ko such that:

∇2
wko
Jko(wko) > νkoIQko

(13)
where the scalars {δk} and {νko} are strictly positive. �

This assumption guarantees that the aggregate cost is strongly convex, and therefore a unique minimizer
exists.
Assumption 2. (Penalty functions): The penalty function pk(wk) is twice-differentiable and its
Hessian matrix is upper bounded:

∇2
wk
pk(wk) ≤ δp,kIQk

(14)
for some strictly positive scalars {δp,k}. �

Distributed Reformulation

In order to solve (7) in a distributed manner, we first need to adjust the notation to account for one
additional degree of freedom. Since the costs of two arbitrary agents k and s, may depend on the same
sub-vector, w`, and these two agents will be learning w` over time, each one of them will have its own
local estimate for w`. Thus, we refer to w` at agent k by w`

k and to the same w` at agent s by w`
s. With

this in mind, we redefine wk; defined earlier in (3) using the local copies instead, namely, we now write
wk

∆= col{w`
k}`∈Ik ∈ RQk (15)

We further let C` denote the cluster of nodes that contains the variable w` in their costs:
C` = {k | ` ∈ Ik} (16)

To require all local copies {w`
k}k∈C` to coincide with each other, we introduce the constraint

w`
k = w`

s, ∀ k, s ∈ C` (17)
Using relations (15) and (17), we can rewrite problem (7) as

minimize
w1,....,wN

Jglob
η (w1, ...., wN) ,

N∑
k=1

Jk,η(wk) (18)

subject to w`
k = w`

s, ∀ k, s ∈ C`, ∀`

Coupled Diffusion Strategy

Algorithm 1 (Coupled diffusion strategy)

ζk,i = wk,i−1 − µη∇wkpk(wk,i−1) (19a)
ψk,i = ζk,i − µ∇wkJk(ζk,i) (19b)
w`
k,i =

∑
s∈Nk∩C`

a`,skψ
`
s,i, ∀` ∈ Ik (19c)

where {a`,sk}s,k∈C` are combination weights that are chosen to satisfy:∑
s∈C`

a`,sk = 1,
∑
k∈C`

a`,sk = 1 (20)

a`,sk ≥ 0, and a`,sk = 0 if s /∈ Nk (21)
In steps (19a)–(19b), a traditional gradient-descent step is applied by each agent using the gradients
of the corresponding risk and penalty functions. The last step (19c) is a combination step, where
for every ` ∈ Ik, each agent k combines its estimate for ψ`k,i with the neighbors that belong to C`
using weights {a`,sk}s,k∈C`. It is assumed that ψk,i and ζk,i have the same structure as wk,i, i.e.,
ψk,i = col{ψ`k,i}`∈Ik and ζk,i = col{ζ`k,i}`∈Ik. This latter step requires agent k to know the set Nk∩C`
for every ` ∈ Ik, i.e., to know the collection of neighboring agents that share the vector w` for every
` ∈ Ik as part of their cost.

Noise Model

In many applications in practice, the true gradient vectors are not available. Therefore, we model the
approximate gradient vector for each agent at time i by:

∇̂wkJk(ζk,i) , ∇wkJk(ζk,i)− vk,i(ζk,i) (22)
where vk,i(ζk,i) is a random gradient noise term that is required to satisfy certain conditions.

Assumption 3. (Gradient noise model): Conditioned on the past history of iterates F i ,
{wk,j−1 : k = 1, ..., N and j ≤ i}, the gradient noise vk,i(ζk) is assumed to satisfy:

E{vk,i(ζk) | F i} =0 (23 )
E{‖vk,i(ζk)‖2 | F i} ≤ᾱk‖ζk‖2 + σ̄2

k (24 )
for some nonnegative constants ᾱk and σ̄2

k. �

Using (22), the coupled diffusion algorithm (19) becomes
ζk,i = wk,i−1 − µη∇wkpk(wk,i−1) (25a)
ψk,i = ζk,i − µ∇wkJk(ζk,i) + µvk,i(ζk,i) (25b)
w`
k,i =

∑
s∈Nk∩C`

a`,skψ
`
s,i, ∀` ∈ Ik (25c)

Network Model

Let N` denote the cardinality of cluster C` and introduce the N` ×N` matrices:
A`

∆= [a`,sk]s,k∈C` (26)
Assumption 4. (Each cluster is strongly-connected): The combinations matrices {A`}
are assumed to be primitive, i.e., we assume that there exists a large enough j0 such that the
elements of Aj0

` have strictly positive entries. This implies that for any two arbitrary agents in
cluster C`, there exists at least one path with nonzero weights {a`,sk}s,k∈C` linking one agent to the
other. Moreover, at least one self weight {a`,kk}k∈C` is nonzero. We further assume the matrices
{A`} to be symmetric and doubly stochastic. �

Convergence Result

Theorem 1. (Mean-square convergence): If wo is a regulara point for the constraints,
then, under Assumptions 4–3, the coupled diffusion algorithm (25) converges for sufficiently
small step-sizes µ. Moreover, for every agent k, it holds that:

lim sup
i→∞

E‖w`,? −w`
k,i‖2 ≤ O(µ) + O(µ2η2), ∀ ` ∈ Ik (27 )

�
awo is a regular point if the gradients of the equality constraints and the active inequality constraints {∇whk,u(wo),∇wgk,v′(wo)} are

linearly independent (where an active constraint means that gk,v′(wo
k) = 0 for some v′, where wo

k = col{w`,o}`∈Ik).

Simulation Results

Consider a network of N agents where each agent k is observing streaming data {dk(i),uk,i} that satisfy
the regression model:

dk(i) + uk,iwk,• + vk(i) (28)
where uk,i ∈ R1×Mk with covariance Ru,k = EuT

k,iuk,i, wk,• ∈ RMk is unknown, and vk(i) is a noise
process independent of uk,i with variance σ2

v,k. The goal of the network is to solve the following problem:

min
w1,....,wN

N∑
k=1

E|dk(i)− uk,iwk|2, s.t
∑
s∈Nk

Bskw
s = bk, ∀ k (29)

(a) (b) (c)

Figure: (a) MSD learning curve for µ = 0.005 and η = 10. (b) MSD for different values of step size µ with η = 10. (c)
Average steady-state error to wo for different values of η and µ.
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