Performing unmixing after demosaicing SSI images is not a good strategy. Instead, unmixing from the SSI data is far better!

Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images

Kinan Abbas, Matthieu Puigt, Gilles Delmaire, Gilles Roussel

Univ. Littoral Côte d’Opale, LISIC, F-62219 Longuenesse, France, firstname.surname@univ-littoral.fr

Assumptions required for the proposed method

- **Assumption 1 (Pure Patch Assumption)**
 For each endmember, there exists at least one sensor “patch” where only this endmember is present.

- **Assumption 2**
 In the patches where several endmembers are present, their abundances significantly vary over each patch.

- **Assumption 1 and 2 are similar to the assumptions made in Sparse Component Analysis (SCA).**

Proposed Low-rank Completion-Based Method

- **Assumptions recently relaxed [4]**

Results

- **PPID + Unmixing**
- **Naive WNMF**
- **ItSD + Unmixing**
- **BTES + Unmixing**
- **GRMR + Unmixing**

Conclusion and Future Work

- **The proposed method provides a slightly better demosaicing performance than state-of-the-art methods and a much higher unmixing enhancement.**
- **We aim to investigate the use of our proposed methods on real SSI data.**
- **We also aim to extend them to the case when endmember spectral variability is met in the acquisition process.**

Acknowledgements and References

This work was partly funded by the Région Hauts-de-France. Experiments presented in this work were carried out using the CALCULCO computing platform, supported by SCAlUSLUC.

References

