



## ABSTRACT

- for point clouds (PCs):
- Super-resolve low-resolution frames based on similarities with adjacent full-resolution frames.
- Several processing tools can be derived: compression, denoising and error concealment.
- Results: average gain of 1.18 dB over low-pass versions of the point-cloud, for a projection-based distortion metric.



#### INTRODUCTION

- signals (capturing, processing and rendering).
- No established standards.
- We focus on signals captured using a set of RGBD cameras: voxelized point clouds.
- Geometry representation: octrees.
- Data compression
- Fast search
- scalability Spatial mixed-resolution and scenarios.
- SR for 3D signals: depth-map resolution increase.
- Our goal is to infer high-frequency content from time-adjacent frames.

# **EXAMPLE-BASED SUPER-RESOLUTION FOR POINT-CLOUD VIDEO** Diogo C. Garcia, Tiago A. Fonseca and Ricardo L. de Queiroz Universidade de Brasilia, Brasilia, Brasil

diogogarcia@unb.br, tiago@image.unb.br and queiroz@ieee.org



• Considering a search window, we minimize the cost function

$$C(i,j) = \frac{H(i,j) + wD(i,j)}{w+1},$$

where

- $\circ H(i, j)$  is the hamming distance between  $\mathbf{n}_T^D(i)$ and  $\mathbf{n}_{B}^{DL}$ ;
- $\circ D(i,j)$  is the Euclidean distance between  $\, {f V}_T^D(i)$ and  $\mathbf{V}_{R}^{DL}(j)$ ;
- $\circ w$  is the inverse of the Euclidean distance between the centers of mass of  $\mathbf{V}_T^D$  and  $\mathbf{V}_R^{DL}$  .

#### METRICS

- Projection-based metric (PPSNR)
- Orthographic projections on the surrounding cube faces: point cloud converted to 2D images.
- Evaluate PSNR between the original and the super-resolved projections.



- Geometric distortion metric (GPSNR)
- Point-to-plane distances between original and super-resolved pointclouds.



# RESULTS

• Super-resolved PCs compared to a low-pass version (upsampled version of a downsampled reference PC).

Table 2. SR performance improvements. PPSNR Gains and GPSNR Gains stand for the average gains in projected PSNR and in geometric quality metric [14, 2], respectively. All values are in dB.

| Sequence | <b>PPSNR Gains</b> | <b>GPSNR</b> Gains |
|----------|--------------------|--------------------|
| Andrew   | 0.76               | 4.99               |
| David    | 1.01               | 4.25               |
| Loot     | 1.84               | 5.40               |
| Man      | 1.93               | $\infty$           |
| Phil     | 0.27               | 4.61               |
| Ricardo  | 1.24               | 5.16               |
| Sarah    | 1.18               | 4.64               |
| Average  | 1.18               | 4.84               |

• Subjective evaluations for the best (Man) SR and the worst (Phil) SR performance are allowed by views comparison.



Fig. 5. Point-cloud projections for sequences (a)-(b) Man, frames 23 and 93, and (c) Phil, frame 175. For each image, from left to right, the columns correspond to the projections of: the original signal, the super-resolved signal, the residue of the super-resolved signal, the low-pass signal and the residue of the low-pass signal.

## CONCLUSIONS

- Framework <u>successfully inferred high-frequency</u> by exploring similarities between adjacent point-cloud frames.
- Results can benefit a point-cloud encoding framework for efficient transmission, error concealment and storage.

## ACKNOWLEDGEMENT

 Work partially supported by CNPq under grant 308150/2014-7.