Generative Models for Low-rank Video Representation and Reconstruction from Compressive Measurements
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Introduction Trained vs Untrained Model Experimental Setup

= Compressive Sensing: A sensing and reconstruction framework that * |In generative prior approach we often assume that we have a trained < Datasets: Different video sequences from KTH dataset resized to 64x64

allows us to recover a structured signal from a small number of generator which can well approximate the target image. But we cannot and UCF101 dataset resized to 256x256.

linear/nonlinear m rements. find trained generator for every application in practice. : : .

ear/nonlinear measurements 5 Y app P * Latent code dimension: k = 256 for 64x64 and k = 512 for 256x256 video
= Examples: Inpainting, denoising, super-resolution, spatial compression ¢ Recent research shows that convolutional generative structures alone sequences. Rank=4 as low-rank.
rovide good prior for reconstructing natural images [4]. . .

= General Problem Formulation: Suppose we are given noisy compressive P 5000 P 5 ges (4] * Optimizer: Gradient descent for latent code update, Adam for network

measurements of a video sequence as * Based on this finding, we use untrained generator as a prior for solving parameter update.

video compressive sensing by optimizing over latent codes and

, * Generator: We used generator architecture from DCGAN [5].
network weights.
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* An under-determined system has infinitely many possible solutions. E Optimization
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* To recover the unknown signal we must restrict the solution space to a

z; : variable ) ' g . |
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set § € R™ that captures some known structure X, is expected to obey. 7 fixed 21 ¢ variable = ¢ variable + low rank Optimization
Limited range of generator v+ variable ¥ : variable
: i i i i (fails to recover new examples) Very large range of generator Large range of generator
* In a generative prior setup, we assume that the target image lies in the (orone 10 aver fitting] (fine comg e e oration) Handwavisg Avchiory
range of a trained generative model. Generative model, G() IS d (a) (b) (c) Figure 3. Joint optimization (untrained generator) vs latent code
function that maps a latent variable z € R to the Image X € R", Figure 2. An illustration of different generative priors (a) Optimizing z, of a trained optimization (trained generators: Generatorl and Generator2).
. . generator. (b) Jointly optimizing z, and y enables recovery of a larger range of images. Generatorl is trained on the same dataset as the test set,
¢ The COmpreSSIVG SenS|ng prOblem can then be fOrmU|ated dS the (C) Joint Opt|m|zat|0n + Low-rank constraint potentia”y exp|ain other structures in data. Generator? is trained on CIFAR10. Frame size is 64x64.
following constrained optimization problem [1]:
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