1 Introduction

Problem: Estimate phase \(\phi \) from given magnitude spectrum \(M \) such that a consistent time signal is achieved via inverse short-time Fourier transform (ISTFT).

Applications:
- Speech enhancement and speech separation
- Speech synthesis and voice conversion

2 System Overview

Two-stage phase reconstruction system (similar to [1]):
1. Use deep neural networks (DNNs) to estimate phase derivatives
2. Reconstruct phase from its estimated derivatives

Proposed improvements:
- A novel regularized cosine loss function
- Shift correction (SC) as a pre-processing step
- A novel phase reconstruction method

3 Phase Derivatives Estimation

- Train two equally structured DNNs using combined loss:
 \[L_{\text{total}} = L[\Delta\hat{\psi}] + \lambda \cdot L[\Delta\hat{\psi}] \]
 \(L \) should consider \(2\pi \) ambiguity and have a limited solution space
- **Novelty I** - regularized cosine loss function:
 \[L_{\text{reg}}[\Delta\hat{\psi}] := \sum_{k,m} - \cos \{ \Delta\hat{\psi}(k, m) \} + \lambda \cdot |\Delta\hat{\psi}(k, m)|^4 \]
 Here: \(\lambda = \frac{\pi}{2} \)
- Systematic offsets occur in the calculation of \(\hat{\psi} \) and \(\hat{\psi}_d \)
- Offset in \(\hat{\psi}_d \) can be described by the shift theorem of the DFT:
 \[x[n-S] \leftrightarrow X(k) \cdot e^{-i\omega S} \]
- Systematic shift in \(\hat{\psi}_d \) can be observed empirically
- **Novelty II** - shift correction:
 \[\psi_i(k, m) = W[\psi_i(k, m) - \pi/2] \]
 \[\psi_d(k, m) = W[\psi_d(k, m) + \pi] \]

4 Phase Reconstruction Method

- Combine \(\hat{\psi}_i \) and \(\hat{\psi}_d \) such that a consistent \(\hat{\phi} \) is achieved
- **Novelty III** - averaging of weighted estimates \(\hat{\varphi}_P \) from \(P \) paths:
 \[\hat{\phi}(k, m) = \frac{1}{P} \sum_{p=1}^{P} \alpha_p(k, m) \cdot e^{i\hat{\phi}_p(k, m)} \]
 with estimation quality indicators \(\alpha_p \):
 \[\alpha_1(k, m) = M(k - 1, m) \]
 \[\alpha_2(k, m) = M(k, m - 1) \]
 \[\alpha_3(k, m) = \min_{l \in \{-1, 0, 1\}} M(k + l, m + l) \]
- Polar histograms of path error \(\hat{\varphi}_P(k, m) - \hat{\phi}(k, m) \) demonstrate suitability of chosen weights

5 Evaluation

Results after phase reconstruction using different methods:
- Two-stage reconstruction method performs reference algorithms
- Similar performance to Griffin-Lim (100 it.) although no iterations are required

6 Conclusion

- Proposed novelties significantly improve phase reconstruction system
- Novelty I - regularized cosine loss function stabilizes training
- Novelty II - shift correction further stabilizes and accelerates training
- Novelty III - phase reconstruction method outperforms reference algorithms

References

Lars Thieling, Daniel Wilhelm, Peter Jax

International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2021, Toronto, Canada