1. Abstract

In this paper, we describe a method we have employed at the University of Bristol to improve the undergraduate project experience. We describe the methodology we employ, which consists of a pre-built environment, close supervision by a researcher, and compiled reference material. We then compare the methodology with its absence using the frequency of undergraduates publishing as our metric. We observe a noticeable increase in the number of undergraduate publications under the new methodology, as well as a number of unexpected benefits for the students.

2. Boilerplate and Material

- Students provided with boilerplate code that allowed them to get data in and out of the system with ease.
- Boilerplate made use of a virtual machine to allow the host software to be moved between different computers.
- Students could then write their applications almost immediately, as opposed to a long set-up process.

- Boilerplate made generic so that it can be used for multiple purposes.
- Provided multiple example applications so that students could understand how to use boilerplate code.
- Provided reference books [1] to help students understand the architecture and for looking up the solution to problems.

3. Assistance

- Undergraduate students working alongside researchers.
- Researchers have experience in the area and disseminate knowledge to undergraduates.
- Researchers provide the link between subsequent years.
- Researchers can suggest areas that are lacking in research (due to in-depth literature review) and hence easy to publish in.
- Researchers benefit from the experience of explaining ideas (presentation and communication skills).
- Knowledge gained by undergraduate student is fed back to researcher.
- Researchers can test ideas with the support of the undergraduate students.
- Researchers co-publishes with undergraduate student.

4. Examples

- **Han Cui**
 - Development of real-time stereovision on DSPs for automotive applications.
 - Hardware set-up and boilerplate provided.
 - Was able to start immediately with algorithm optimisation.
 - Published a paper [2] and accepted to Cambridge for a masters degree.

- **Victor Prokhorov**
 - Development of a faster-than-real-time lane detection algorithm.
 - Given a multitude of example applications, pre-built environment and tools.
 - Arrived at the point of working communication in weeks when it originally took months.
 - Published a paper [3] and accepted to Cambridge for a PhD.

- **Aliaksai Mikaliuk**
 - Development of a real-time surface fitting algorithm for pothole detection.
 - Example applications and hardware provided.
 - Published a paper [4] and accepted to Cambridge for a PhD with a grant.

5. Results

- For the three years before the change we had publishing rates of 50%, 0%.
- For the two years after the change we had publishing rates of 75%. Since publishing our paper, another student’s work was accepted for publication.
- Results are promising but have not yet withstood the test of time: can this be maintained across multiple researchers? Can this withstand multiple generations of technology?
- Results shown for embedded programming and video signal processing, need to investigate how this approach can be generalised across multiple disciplines.

6. Conclusion

- We saw vast improvements in our chosen metric (student publishing rates) after implementing this new methodology. This implies a significant improvement in student achievement and satisfaction.
- Our new methodology allows students to deal with real-time signal processing tasks on embedded hardware without spending excessive amounts of time learning the platform. They can learn only what is needed to accomplish their goal.
- We aim to continue utilising this methodology and determine its long-term viability to alleviate the issues of the increasing rate of new technology releases.

*References: