

On the Supermodularity of Active Graph-based Semi-Supervised Learning with Stieltjes Matrix Regularization

Abstract

- Active Graph-based Semi-Supervised Learning (AG-SSL): actively select a small set of labeled examples and utilize their graph-based relation to other unlabeled examples to aid in machine learning / signal processing tasks
- A revisit to graph-based SSL formulation [1-3] with strategic node information querying and a performance guaranteed greedy algorithm
- Different from the perspective of graph signal processing and sampling, we dispense with any assumptions on the bandlimitedness of "graph signals"
- We formulate the problems of inferring a graph signal (labels) based on an incomplete set of noisy linear observations as well as selecting the set of observations to maximize the precision of this inference
- We prove that under a broad class of regularization functions parameterized by the family of **Stieltjes matrices**, the objective function is **supermodular** in the set $S \subset V$ of labeled examples

Background and Problem Formulation

□ Stieltjes matrix

- A real symmetric matrix **X** is said to be a (possibly singular) Stieltjes matrix if it is positive semidefinite and its off-diagonal entries are non-positive
- Examples: (unnormalized) graph Laplacian matrix $\mathbf{L} = \mathbf{D} \mathbf{A}$, normalized graph Laplacian matrix $L_N = D^{-1/2}L D^{-1/2}$. A: weight matrix. D = diag(A1)
- Inverse-positivity property: the inverse of a Stieltjes matrix is element-wise non-negative

□ Supermodularity

A set function f(S) is supermodular if $\delta_v(S) \ge \delta_v(T)$ for any $S, T = S \cup \{u\}, u \notin I$ S, and $v \notin T$, where $\delta_v(S) = f(S) - f(S \cup \{v\})$ is the decrease due to adding v to S – i.e., diminishing decrease in f(S)

□ Our model

- x: the signal (i.e., labels) to be recovered on the graph G = (V, E). |V| = n.
- Model x as a random signal with a multivariate Gaussian prior distribution

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^T \mathbf{\Omega}_0 \mathbf{x}\right)$$

- Ω_0 : precision matrix with $Rank(\Omega_0) = n$ or n 1 (improper Gaussian)
- A total of m noisy linear observations of the form y = Cx + n are available to be taken. C: fixed $m \times n$ measurement matrix. $n \sim N$ (0, σ^2 I)
- □ Active Graph-based Semi-Supervised Learning (AG-SSL)
- Subset selection: select S with $|S| = s \le m$ s.t. $y_S = C_S x + n_S$. C_S : submatrix of **C** with rows indexed by S
- Posterior distribution $p(\mathbf{x} | \mathbf{y}_{\mathcal{S}}) \propto \exp \left[-\frac{1}{2} \left(\frac{1}{\sigma^2} \| \mathbf{y}_{\mathcal{S}} \mathbf{C}_{\mathcal{S}\mathbf{x}} \|^2 + \mathbf{x}^T \boldsymbol{\Omega}_{0\mathbf{x}} \right) \right]$ is also Gaussian with precision matrix $\Omega(S) = \Omega_0 + \frac{1}{\sigma^2} \mathbf{c}_s^T \mathbf{c}_s$. Assume $\Omega(S)$ to be non-singular for $S \neq \{\emptyset\}$
- MSE estimator: $\hat{\mathbf{x}} = \mathbb{E}[\mathbf{x} | \mathbf{y}_{S}] = \frac{1}{\sigma^{2}} \Sigma(S) \mathbf{C}_{S}^{T} \mathbf{y}_{S}$. $\Sigma(S) = \Omega^{-1}(S)$: posterior covariance matrix
- The corresponding MSE is $f(S) = \mathbb{E} \left[\|\widehat{\mathbf{x}} \mathbf{x}\|^2 | \mathbf{y}_S \right] = \operatorname{tr} \Omega(S)^{-1} = \operatorname{tr} \left(\Omega_0 + \frac{1}{\sigma^2} \mathbf{C}_S^T \mathbf{C}_S \right)^{-1}$
- Goal of AG-SSL: select a set $S \subset V$ with |S| = s to minimize f(S)
- Note: maximizing the posterior distribution is equivalent to solving the following minimization problem with $\alpha = \sigma^2$: minimize_x $\|\mathbf{y}_{\mathcal{S}} - \mathbf{C}_{\mathcal{S}}\mathbf{x}\|^2 + \alpha \mathbf{x}^T \Omega_0 \mathbf{x}$
- This formulation coincides with the formulation of graph-based SSL [1-3]
- And its solution is also given by the MSE estimator (posterior mean)

Pin-Yu Chen*

Dennis Wei*

IBM Thomas J. Watson Research Center, USA

	Main Results and AG-SSL Algorithm
Lemma: Assume to v to S is given by	that $\Omega(S)$ is invertible. Then the decrease in f due to add $\delta_v(S) = f(S) - f(S \cup \{v\}) = \frac{\ \Sigma(S)\mathbf{C}_v^T\ ^2}{\sigma^2 + \mathbf{C}_v\Sigma(S)\mathbf{C}_v^T}.$
Corollary: The ob	jective function $f(S)$ is a monotonically nonincreasing se
supermodularity do In the remainder o that Ω_0 is a (possible)	If the main results, we specialize to the case $C = I$ and a bly singular) Stieltjes matrix jective function $f(S)$ is supermodular if $C = I$ and Ω_0 is a
	Igorithm with performance guarantee: Greedy AG-SSL Algorithm
Input: Grain output: Grain output: s Initialization for $k = 1$ Find v $\mathcal{S} \leftarrow \mathcal{S}$ end for	aph G, regularization Ω_0 , σ , # of samples s ampling set S and predictor $\widehat{\mathbf{x}}(S)$ on: $S = \{\emptyset\}$
f(S) over sets of s first iteration of Alg	be the sampling set obtained from Algorithm 1, S^* a minimizer $ S = s$, and S_1^* a minimizer of $f(S)$ over singletons gorithm 1). Then $\frac{f(S^*)}{f(S^*)} \leq \left(1 - \frac{1}{s}\right)^{s-1} \rightarrow \frac{1}{e} \text{ as } s \rightarrow \infty.$

AG-SSL on Community Detection and Comparative GSP Methods

- **Community detection:** partition the nodes into well-connected groups based on the connectivity structure of a graph
- **AG-SSL:** node label (membership) querying during community detection process
- **Datasets:** (1) Karate club network (34 nodes); (2) Dolphin network (62 nodes) a) Only 2 community labels (+1 or -1) – control multi-label class representation issue
- b) Network topology is given control graph construction issue
- c) Small network size tracking similarity (overlapping sampled nodes) to GSP

Comparative Methods:

- Random sampling (Rand)
- 2) Graph spectral proxy (GSP) [4]
- 3) Graph shift operator (GSO) [5]
- 4) Chamon-Ribeiro's method (CRM) [6]

