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1 Introduction

# Depression can cause neurophysiological changes, thereby may affect laryngeal control i.e.
behaviour of the vocal folds.

# Characterising these changes from speech signals is non-trivial, since this involves reliable
separation of the voice source information from them.

# Conventional hand-crafted feature sets used in speech based detection are related to:

� voice quality: pitch frequency, jitter, shimmer, degree of breathiness,

� vocal tract shape: formant locations, cepstrum based features,

� statistical properties of features: low-level descriptors.

# Classifiers used: Support vector machines, neural networks (CNN, LSTM, etc.)

# Here we investigate:

� knowledge-driven signal processing to extract voice-source related signals.

� automatic feature learning from these raw signals using CNNs for depression detection.

4 Comparison of performances

Figure: Unweighted average F1 scores of the investigated approaches.

# � LLD-SVM: Valstar et al., “AVEC 2016: Depression, mood, and emotion recognition workshop and challenge,” in Proc. 6th Int.

Workshop on AVEC, 2016, pp. 3–10, ACM.

� Spec-CNN: Ma et al., “DepAudioNet: An Efficient Deep Model for Audio Based Depression Classification,” in Proc. 6th Int. Workshop

on AVEC, 2016, pp. 35–42, ACM.

7 Conclusion

# We investigated directly modelling voice source related signals using CNNs for speech based
depression detection.

# Our studies showed that filtering speech based on prior knowledge leads to effective
depression detection than using raw speech or hand-crafted feature based systems.

# Furthermore, lower frequency regions, including F0, and glottal closure instants were found
to carry the most depression-related information.

2 Proposed approach

Knowledge-driven signal processing for extracting voice-source related information

# Raw speech signals: contain all the information.

# Low pass filtered (LPF) speech: contains F0 and the first few formants.

# Signals based on source-filter model:

� homomorphically filtered voice source signals (HFVS)

� linear prediction residual (LPR)

# Zero-frequency filtered (ZFF) signals: characterise glottal activity in terms of its excitation
strengths and F0.

Modelling approaches of the first convolutional layer

# Sub-segmental: 30 samples (<1 pitch period), for better time resolution.

# Segmental: 300 samples ( 2-3 pitch periods), for better frequency resolution.

5 Analysis: spectral characteristics of the first convolutional layer

# The overall magnitude spectrum of the first convolutional layer reveals the immediate focus
of the CNN towards the detection task.
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(a) sub-segmental modelling
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(b) Segmental modelling

Figure: Frequency response of various systems modelled at sub-segmental and segmental levels.

# Most of our systems, shown above, emphasise lower frequency regions that contain
voice-source related information.

# The filters modelling at segmental level show better frequency resolution, as expected.
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3 Data set and experimental setup

# Speech data from the Depression analysis interview corpus - wizard of Oz (DAIC-WOZ), of the
AVEC 2016 challenge, was used.

# Tools used were Keras/Tensorflow.

# Model architecture of the convolutional neural networks (CNNs):

� input of length 250ms, where the signals were sampled every 10ms,

� 4 convolutional layers with rectified linear (ReLU) activations and max-pooling,

� 1 fully connected hidden layer with ReLU activations, and

� a single output node with a sigmoid to predict the probability of depression.

# Training involved:

� performing stochastic gradient descent with cross-entropy loss, and

� repeating this on 10 models with different random initialisations.

# Testing involved:

� predicting the depression probability from the individual segments,

� estimating a speaker-level probability by averaging from all the 10 trained models, and

� thresholding the probability for depression/control prediction.

6 Relevance analysis
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Figure: Relevance analysis on ZFF and LPR based sub-segmental models using a sustained vowel “uh”.

# A relevance signal is computed by backpropagating the gradients of the CNN’s output
activation, for a given input signal.

# In this case, it indicates the input samples that are most informative for predicting depression.

# Our analysis using guided backpropagation showed that

� the sub-segmental ZFF and LPR based CNNs focus on the ZFF signal’s positive to negative
zero-crossings, and

� these correspond to the glottal closure instants.

# Autocorrelation of the relevance signals indicates that they retain F0 information.
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