A Fixed-Point Iteration for Steady-State Analysis of Water Distribution Networks

Mohammadhafez Bazrafshan1, Nikolaos Gatsis2, Marcio Giacomoni3, and Ahmad F. Taha2

1Dept. of Electrical, Computer & Energy Engineering
University of Colorado-Boulder

2Dept. of Electrical and Computer Engineering
The University of Texas at San Antonio

3Dept. of Civil and Environmental Engineering
The University of Texas at San Antonio

November 28, 2018

Acknowledgments: NSF Grants CMMI-1728629 and CCF-1421583
Motivation and contribution

- Water flow problem in water distribution networks
 - Compute the water flow rates in all pipes and the water pressure at all nodes
 - Nonlinear system of equations
- Fundamental task in water distribution network design and operation
 - [Mala-Jetmarova et al. '17] [Fooladivanda-Taylor '18] [Singh-Kekatos '18]
 - and joint optimization of energy and water networks in smart cities
 - [Dall’Anese-Mancarella-Monti '17] [Zamzam et al. '18] [Li et al. '18]
- Traditional solvers: Hardy-Cross, Newton-Raphson, Linear Theory Method
- Recent fixed-point method [Zhang et al. '17]
 - Improved convergence over industry standard (EPANET), but no analysis
- Existence/uniqueness of solution and algorithm convergence have been recognized as crucial in the literature
 - [Boulos-Altman-Liou '93] [Todini '06]
- Recent developments in fixed-point methods for power flow analysis
 - $1-\phi$ [Bolognani-Zampieri '16] [Wang et al.'18]; $3-\phi$ [Bazrafshan-Gatsis '18], [Bernstein et al.'18]
- Uniqueness of solution in natural gas networks [Singh-Kekatos '18]
- This paper: A fixed-point method for the water flow problem
 - Local uniqueness of solution, convergence, and rate of convergence
Water distribution network model

- Directed graph \((\mathcal{N}, \mathcal{L})\)
- \(\mathcal{N} = \{0, \ldots, N\}\) is the set of \(N + 1\) nodes
 - Node 0 is a reservoir
 - Rest of nodes are generically demands
- \(\mathcal{L} = \{1, \ldots, L\}\) is the set of \(L\) links: Pipes

- Hydraulic head at node \(n\) (proxy for pressure): \(h_n\)
- Rate of water injection at node \(n\): \(s_n \geq 0\) for reservoir, \(s_n \leq 0\) for junctions
- Rate of water flow in pipe \(\ell\): \(q_\ell\)
- Head loss across pipe \(\ell\) (pressure drop due to friction): \(\bar{h}_\ell\)

Hazen-Williams eq.: \(\bar{h}_\ell := \bar{h}_\ell(q_\ell) = A_\ell|q_\ell|^{0.852} q_\ell\)

where \(A_\ell\) is a constant that depends on the pipe characteristics

- Vectors \(s = \{s_n\}_{n \in \mathcal{N}_+}\); \(h = \{h_n\}_{n \in \mathcal{N}_+}\); \(s_\mathcal{N} = [s_0, s']'\); \(h_\mathcal{N} = [h_0, h']'\);
 \(q = \{q_\ell\}_{\ell \in \mathcal{L}}\); \(h = \{h_\ell\}_{\ell \in \mathcal{L}}\); \(h(q) = \{h_\ell(q_\ell)\}_{\ell \in \mathcal{L}}\)
Continuity and energy equations

- Graph incidence matrix $\mathcal{I}_N \in \mathbb{R}^{N+1} \times \mathbb{R}^L$

 $[\mathcal{I}_N]_{i,\ell} = \begin{cases} +1, & \text{if } \ell \text{ is directed out of node } i \\ -1, & \text{if } \ell \text{ is directed into node } i \end{cases}$

- **Continuity equation:** Rate of water injection into node $n \in \mathcal{N}$ equals the total rate of water flowing out on the links connected to node n

 $$s_N = \mathcal{I}_N q$$ \hspace{1cm} \text{(CE)}

- **Energy equation:** Head at the upstream node is equal to the head at the downstream node plus head losses occurring on the way

 $$\bar{h}(q) = \mathcal{I}'_N h_N$$ \hspace{1cm} \text{(EE)}
The Water Flow Problem

- Reservoir maintains constant head h_0
- Partition $\mathcal{I}_N = \begin{bmatrix} \mathcal{I}_0' \\ \mathcal{I} \end{bmatrix}$
 - \mathcal{I}_0': Row corresponding to reservoir (node 0)
- The continuity and energy equations yield the Water Flow Equations:
 \begin{align*}
 s &= \mathcal{I} q, \quad (\text{WFE-1}) \\
 \bar{h}(q) &= \mathcal{I}' h - \mathcal{I}' 1_N h_0 \quad (\text{WFE-2})
 \end{align*}

- **Water Flow Problem**: Given the reservoir head h_0 and the injections s, determine the flow rates on all links, $q \in \mathbb{R}^L$, and the total head at all remaining nodes, $h \in \mathbb{R}^N$
- (WFE) is a system of $L + N$ nonlinear equations
Fixed-point map: Derivation (1)

- Suppose that all flows are bounded away from zero
- Notation: Diagonal matrix \(A = \text{diag}(A_1, \ldots, A_L) \)
- \(\text{diag}(|q|^{-0.852}) \) with entries \(|q_\ell|^{-0.852} \) on the diagonal
- The Hazen-Williams eq. \(h_\ell = A_\ell |q_\ell|^{0.852} q_\ell \) is written as
 \[
 q = A^{-1} \text{diag}(|q|^{-0.852}) h
 \]
- Introducing the latter in the WFE we obtain
 \[
 s = \mathcal{I} q \\
 h(q) = \mathcal{I}' h - \mathcal{I}' 1_N h_0
 \]

Lemma

In a connected graph with nonzero flow rates, \(\mathcal{I} A^{-1} \text{diag}(|q|^{-0.852}) \mathcal{I}' \) is invertible.

Proof: The matrix is the weighted Laplacian of the graph and is pos. semidefinite
Fixed-point map: Derivation (2)

- It follows from the previous lemma that

\[h - 1_N h_0 = [\mathcal{I} A^{-1} \text{diag}(|q|^{-0.852}) \mathcal{I}']^{-1} s \]

- Multiplying with \(\mathcal{I}' \) and invoking WFE-2 yields

\[h = \mathcal{I}' [\mathcal{I} A^{-1} \text{diag}(|q|^{-0.852}) \mathcal{I}']^{-1} s \]

- Introducing the latter into the Hazen-Williams equation finally yields a \textit{fixed-point map} for the water flows \(q \):

\[q = T_s(q) \]

where \(T_s(.) \) is parametrized by the injection vector \(s \):

\[T_s(q) = A^{-1} \text{diag}(|q|^{-0.852}) \mathcal{I}' [\mathcal{I} A^{-1} \text{diag}(|q|^{-0.852}) \mathcal{I}']^{-1} s \]
Convergence

- Any flow vector \(q \) that solves the water flow problem satisfies \(q = T_s(q) \) and vice versa
- Iterative method indexed by \(k = 1, 2, \ldots \) initialized with \(q^0 \)

\[
q^{k+1} = T_s(q^k)
\]

Proposition

- Suppose that \(q^* \) is a fixed-point of the map \(T_s(q) \), that is, \(q^* = T_s(q^*) \)
- Let \(J_s^* = \frac{\partial T_s(q)}{\partial q} \bigg|_{q=q^*} \) be the Jacobian of the map \(T_s(q) \) evaluated at \(q^* \)
- Let \(\rho(J_s^*) \) be the spectral radius of \(J_s^* \)

\(\Rightarrow \) If \(\rho(J_s^*) < 1 \), then \(T_s(q) \) is locally a contraction map around \(q^* \), and \(q^* \) is a locally unique fixed point

Proof: Based on Ostrowski Theorem [Ortega-Rheinboldt ’70]
If all eigenvalues of J^*_s have magnitude less than one, and the method is initialized in a neighborhood of q^*, then convergence to q^* is guaranteed. The solution is unique in this neighborhood. The proposition does not characterize the size of the neighborhood. The contraction property characterizes the speed of convergence.

- Distance between successive iterates decreases by a factor $\alpha \in (0, 1)$

$$\|q^{k+1} - q^k\|_\infty \leq \alpha\|q^k - q^{k-1}\|_\infty$$

- Distance decreases linearly when plotted on a log scale

$$\log\|q^{k+1} - q^k\|_\infty \leq k \log \alpha + \log\|q^1 - q^0\|_\infty$$

- α is roughly $\rho(J^*_s)$
Test network

- Simplified version of test network in EPANET User Manual
- Demands $s = [0, -150, -150, -200, -150, 0, -300]'$ gallons per minute; reservoir head $h_0 = 850$ feet
- $A_\ell = 4.727C_\ell^{-1.852}d_\ell^{-4.871}l_\ell$
- d_ℓ and l_ℓ: diameter and length of circular pipe ℓ in feet
- C_ℓ: Hazen-Williams roughness coefficient (unitless)

<table>
<thead>
<tr>
<th>Pipe</th>
<th>Length (ft.)</th>
<th>Diam. (in.)</th>
<th>H-W C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3000</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>5000</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>5000</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5000</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>7000</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>5000</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>7000</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>3000</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>
Numerical tests

- Convergence criterion:
 \[\| q^k - T_s(q^k) \|_\infty \leq 0.1 \text{ GPM} \] (quite small)
- Convergence linear in the iteration index
- Solution very close to Matlab’s fsolve

- From the figure:
 \[\frac{\| q^{k+1} - q^k \|_\infty}{\| q^k - q^{k-1} \|_\infty} \approx 0.85 \]
- Very close to \(\rho(J^*_s) = 0.8520 \)
Conclusions and future directions

- The water flow problem amounts to a nonlinear system in flows and heads
- A fixed-point method is developed when all links are pipes
- Jacobian of the map characterizes the convergence, at least locally

Future directions

- Comprehensive network model: Tanks and pumps
- Other (more accurate) head loss equations
- More sophisticated analysis of the fixed-point map
 - Conditions for global convergence
 - Uniqueness of solution in a larger region of the q-space