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Abstract: Current solutions for below the elbow amputees include affordable prosthesis allowing only a single movement or 

highly expensive prosthesis allowing several gestures. In this project, our goal was to design a system that provides an 

inexpensive, multi-functional solution for the hand prosthesis problem. We construct a real-time, portable system based on the 

Myo armband and a 3D printed prosthesis and show that this framework can provide a good and inexpensive solution for below 

the elbow amputees of all ages. 
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1. Introduction 
In the USA alone, there are 500,000 below the elbow 

amputees. The causes vary from trauma, disease, or congenital 

conditions [1]. Since this condition has a significant impact on 

daily functionality, the use of a hand prosthesis can assist in 

regaining the lost functionality. The current solutions are far 

from perfect, due to both price and functionality range. 

Current hand prostheses range from mechanical prostheses, 

allowing only a single movement and costing several thousand 

dollars [2], to myoelectric prostheses, a prosthetic hand 

powered by Electromyography (EMG) signals which allows 

several movement types but with a price range of 20,000$ and 

up [2]. These high costs mean that many people around the 

world, especially in the developing world, cannot afford such 

solutions. This is especially problematic for children amputees 

since new prostheses are needed as the child grows, which can 

accumulate to very high costs. Current solutions for the 

problem are mostly provided by non-profit organizations such 

as e-NABLE [3], which offers free online blueprints for 

printing single action prostheses in 3D printers, costing only 

50$. However, these prostheses are limited in their 

functionality and are capable of performing only a single 

movement (closing of the hand).  

Previous work involving myoelectric prostheses addressed 

different aspects of the problem, but did not provide a 

complete solution. For example, a work from 2005 [4] 

presented a real-time system with classification success rates 

of 93-98%. However, the system requires 7 EMG electrodes 

in inconvenient locations and the control of the system is 

unintuitive. In addition, the data processing is pc-based, 

allowing no portability, and the total price is not considered.    

Another work from 2015 [5] uses the Myo Gesture 

Control Armband Sensor [6], to activate a 3D printed 

prosthesis. However, the system is based on the software 

provided with the Myo armband, which allows only a small 

set of identifiable motions with no resemblance to intuitive 

daily movements. In addition, the success rates of the 

suggested system are not presented.  

In this project, our goal was to design a system that 

provides an inexpensive, multi-functional solution for the 

hand prosthesis problem. For this purpose, we revise available 

blueprints of a single movement prosthesis and construct an 

affordable, intuitive and real-time prosthesis that is multi-

functional and can be assembled without any special skills. In 

addition, we examine several signal-processing algorithms in 

order to allow the correct detection and classification of the 

desired movement. 

The following requirements were addressed in the design 

of the system:  

1. Real-time response. The response time, from command to 

execution of a movement, should be shorter than the 

user's reaction time (less than 250ms) [7]. 

2. Reliability. The classification rate should be higher than 

90%, the “gold standard” of previous work [7]. 

3. Portability. A fully portable and stand-alone system is 

required, without dependence on network availability. 

4. A large variety of gestures. Allows the users to gain 

higher functionality. We aim for a range of 6 gestures. 

5. Intuitive interface. The activation of the prosthetic hand, 

based on EMG, should be similar to the natural activation 

of the hand in order to simplify the learning stage. 

6. Short setup time. The calibration time, after each 

attachment of the prosthesis, should be less than 1 minute. 

We show that our constructed system satisfies all these 

requirements and provides a good, inexpensive solution for 

below the elbow amputees of all ages. 

This project involved an interdisciplinary team from 

Biomedical Engineering and Electrical Engineering 

Departments, along with advisors from Mechanical 

Engineering at the Technion and Physical Therapy 

Department at Haifa University.  

2. System overview  

The constructed system is composed of 3 main elements: 

EMG sensors (Myo armband [6]), Intel Edison board and a 

printed prosthetic hand (Figure 1). This framework allows the 

user to operate the prosthesis by contracting the forearm 

muscles in an intuitive way. We focused on 6 gestures, based 

on the common movement types used in high-end commercial 

myoelectric prostheses. Figure 2 presents the implemented 

gestures which include (from left to right) neutral position, 

extending the thumb, closing the hand, extending the index 

finger, pinch and “Frisbee” catch. 



 
                Figure 1: System overview. 

 
Figure 2: The six implemented hand gestures. 

 

a. EMG sensor: The Myo Gesture Control Armband Sensor 

[6] is used for recording the EMG activity. The sensor is 

located on the user’s forearm and records the EMG signal 

using a circular array of 8 sensors. The EMG signal is 

sampled at 200Hz and sent via Bluetooth to the 

embedded system. 

 
Figure 3: Myo armband EMG sensor [6] 

 
b. Embedded system: Implemented on an Intel Edison 

board, located on the prosthesis. The embedded system 

collects the data from the Myo armband and applies a 

classification algorithm to the EMG signals in order to 

identify the current hand gesture. Based on the gesture 

classification, a command is sent to the motor units in 

order to perform the desired gesture.  

 

c. The prosthesis:  The prosthesis was printed using a 3D 

printer, Objet 24 [8]. The 3D design of the hand 

prosthesis is based on modifications of blueprints from 

the e-NABLE group [3], "Raptor Reloaded" (RR). The 

hand described by the RR blueprints is open by default 

and closes using a mechanical lever. Modifications of the 

blueprints included replacement of the lever with 3 motor 

units (servos s960) to allow 3 degrees of freedom and, in 

addition, the thumb of the hand was replaced. The motor 

units are operated by commands received from the Edison 

board in a form of Pulse-width modulation (PWM). The 

resulting prosthesis complex is presented in Figure 4. 

The system development included 3 stages. First, the 

classification algorithm was devised in an offline 

environment. The algorithm was then implemented in a real-

time environment and finally, the prosthesis, including the 

mechanical parts, motor units and Edison board, was 

assembled. 

 
Figure 4: The constructed prosthetic hand. 

 

3. Classification Algorithm in an Offline 

Environment   

The main goal here is to determine the performed hand 

gesture, based on the received EMG data from the forearm, 

while maintaining real-time response. For this purpose, we 

examined several existing methods for simple feature 

extraction and several classification algorithms. The 

considered algorithms included only those simple enough to 

be implemented in real-time with low computational costs. 

In the offline setting, EMG signals were collected using 

the Myo armband, sent via Bluetooth and then analyzed using 

MATLAB. The data is composed of 8 vectors, one per sensor, 

sampled at 200Hz [6]. We note that the frequency content of 

the EMG signal can range up to 400Hz [7]. This presented 

significant challenges, limiting the possible choices of feature 

extraction methods to simple, time-domain methods. 

We applied the following algorithm to the recorded data: 

1. Segmentation of the data into time-frames of N=40 

samples. 

2. Feature extraction from each time segment 

(containing data from the 8 EMG channels). 

3. Classification of each time segment to one of the 6 

gesture classes using K-Nearest Neighbors (K-NN). 

For the feature extraction stage we examined several 

features commonly used in the literature [7, 9-11]. The mean 

absolute value (MAV) outperformed all other features due to 

its simplicity and due to the restriction imposed by the low 

sampling rate. Figure 5 presents a visualization of the first 3 

principal components of the MAV feature, applied to recorded 

EMG data of the 6 different gestures. A clear separation 

between the different gesture classes can be seen in the 3D 

space.  

           
Figure 5: Data after MAV feature extraction. 

 



4. Real time algorithm 

Several adjustments were required for the real-time 

system. First, due to differences between people and 

differences in the placement of the Myo armband, a 

calibration stage was added. The calibration stage is required 

each time the armband is placed and therefore was restricted 

to 1 minute. It includes recording a short execution of all 6 

implemented gestures. Second, in the offline simulation 

environment, the available Myo armband drivers handled the 

Bluetooth communications. However, in the embedded 

platform (Edison board), new drivers were written for sample 

acquisition from the Myo armband and conversion of the raw 

data to a readable format. In addition, due to voltage 

requirements of the 3 motor units controlling the prosthesis 

movement, a voltage adapter was needed. The adapter 

includes user interface buttons for the calibration stage. 

Finally, the MATLAB code was converted to Python and 

implemented in the Edison board. A flow chart of the online 

algorithm appears in Figure 6.  

 
Figure 6: Real-time algorithm workflow. 

 

5. Results and Discussion  

5.1 Offline Algorithm Success Rate  

EMG data from 5 healthy subjects were recorded using the 

Myo armband. For each of the 6 gestures a 10 second 

recording was obtained from each subject. For each subject 

separately, we performed 30 iterations of cross-validation and 

randomly partitioned the data into a train-set containing 75% 

of the data and a test-set containing 75% of the data. The 

algorithm described in Section 3 was then applied to the 

acquired data. Table 1 presents the classification results for 

each subject.  

Table 1: Offline algorithm success rate. 

We note that when combining data from different subjects, 

the classification results are insufficient and domain 

adaptation is required. We addressed this issue differently, as 

part of the calibration stage, as described in Section 4. 

5.2 Affordability of system   

The costs of the components of the constructed system 

appear in Table 2.  

Part Price  

3D printed hand [3]  50$ 

Motor unit (MG996R Servo) X3 15$ 

Microcontroller Intel Edison 80$ 

Sensor MYO armband [6] 200$ 

Total Cost 345$ 
Table 2: System costs  

 

6. Conclusions 

In this project, our goal was to design an inexpensive 

solution for the hand prosthesis problem. We presented an 

affordable real-time hand prosthesis framework and proved 

the feasibility of our suggested solution. Finally, we showed 

that the set objectives and system requirements can be fully 

accomplished.  

In the future, we plan to address several weaknesses of our 

solution. First, we plan to examine different measurement 

modalities in order to obtain higher sampling rates which will 

allow more flexibility in the choices of window size and 

feature extraction algorithms. In addition, this could lead to 

further reduction of the system’s price due to the high cost of 

the Myo armband. Second, we plan to address the high 

variability between different people and implement a domain 

adaptation algorithm in order to shorten the classification 

stage and increase the size of the train-set.  
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