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Experiments and Results (1)

IBM cluste rnng ® To train the RL—SE system, 460 utterances with signal-
® The 64-dimensional MPS " to-noise ratio (SNR) level at 5 dB. The overall RL—SE
features were extracted —— FESEEES and ASR systems were evaluated using another 30
from all utterances. An = utterances at 0 and 5 dB SNR levels, where the
IBM filter iIs computed for .4 utterance lengths were around 1 to 6 seconds. we used

each feature vector. The the baby-cry noise as the background noise.
IBM clustering module

groups the entire set of *

Conclusion

® \We present an RL-based SE for robust speech
recognition without retraining the ASR system In this
study. By using the recognition errors as the objective
function, the RL-based SE can effectively reduce
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CERs by 12.40% and 19.23% at 5 and O dB SNR
conditions, respectively.

® In the future, We will try to implement the whole
system with only noisy speech without the paired
clean speech.

: =ESesE e ® we established two RL-based SE models, with two
IBM vectors collected e parameters p for the number of frame In an analysis

from the training data to - chunk: the systems with p=1 and p = 2 are termed
A clusters based on the IBM Index RLSE, and RLSE,.
K-means algorithm.




