

Learning Overcomplete Dictionaries from Markovian Data

Saeed Akhavan¹, Samaneh Esmaeili¹, Masoud Babaie-Zadeh², Hamid Soltanian-Zadeh¹

¹ School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran ² School of Electrical and Computer Engineering, University of Sharif, Tehran, Iran

1. Dictionary Learning Problem

✓ **Target:** factorizing the matrix of training signals into the dictionary with unit norm columns (atoms), and the coefficient matrix with sparse columns, i.e.,

$$\{\mathbf{D}, \mathbf{X}\} = \underset{\mathbf{D}, \mathbf{X}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}$$
$$s.t. \quad \|\mathbf{x}_{k}\|_{0} \leq N_{0}, \quad 1 \leq k \leq K$$
$$\|\mathbf{d}_{n}\|_{2} = 1, \quad 1 \leq n \leq N$$

3. Model Parameters Estimation

$$\Theta = \operatorname{argmax}_{\Theta} \sum_{k=1}^{K} \log \{ \sum_{s=1}^{S} p(s_k = s | \mathbf{Y}, \Theta) f(\mathbf{y}_k | s_k = s, \Theta) \}$$

s.t. $\|\mathbf{d}_l^{(s)}\|_2 = 1, \quad \|\mathbf{x}_k^{(s)}\|_0 \le N_0$
 $s = 1, 2, ..., S, \quad l = 1, 2, ..., L, \quad k = 1, 2, ..., K$

Expectation - Minimization

By determination of θ , the sequence of states, i.e., $\{s_1, s_2, ..., s_K\}$ is determined using Viterbi algorithm.

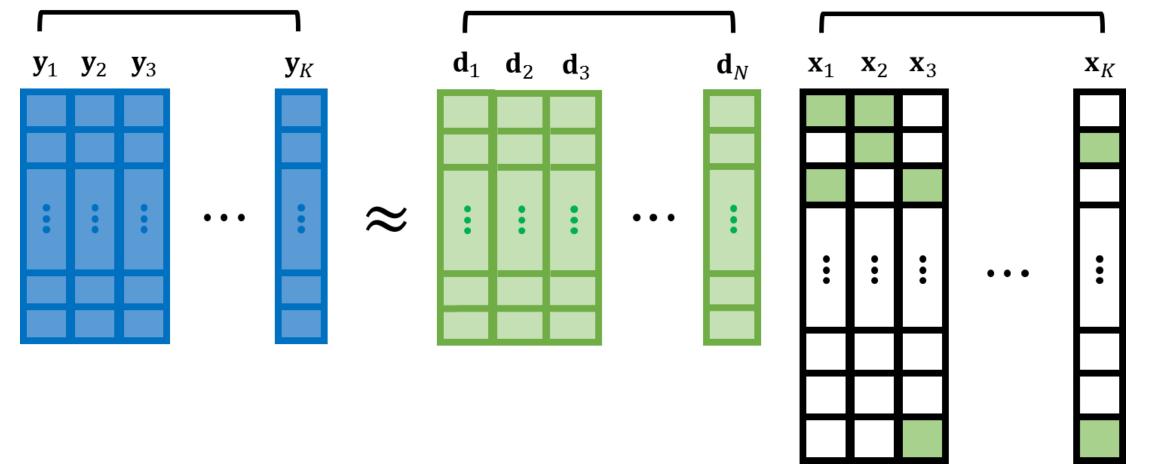


Fig 1. Schematic diagram of dictionary learning problem.

Alternation Minimization > Typical Solution.

Sparsification:

$$\mathbf{X} = \underset{\mathbf{X}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}$$

s.t. $\|\mathbf{x}_{k}\|_{0} \leq N_{0}, \ 1 \leq k \leq K$

 $X \in \mathcal{R}^{N \times K}$

The training signals are considered statistically independent.

$$\mathbf{x}_{k} = \underset{\mathbf{x}_{k}}{\operatorname{argmin}} \|\mathbf{y}_{k} - \mathbf{D}\mathbf{x}_{k}\|_{F}^{2} \quad s.t. \ \|\mathbf{x}_{k}\|_{0} \leq N_{0}$$

Dictionary Update:
$$\mathbf{D} = \underset{\mathbf{D}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{F}^{2}$$

4. Results

First Scenario: Independent training signals.

$$\mathbf{P}_1 = \begin{bmatrix} 0.55 & 0.45 \\ 0.45 & 0.55 \end{bmatrix}$$

SNR_{dB}	Method	$N_0 = 3$	$N_0 = 4$	$N_0 = 5$
10	MOD	80.6	72.4	4.3
	New MOD	81.2	72.8	4.8
	K-SVD	83.4	81.8	12.9
	New K-SVD	83.7	82.2	14.1
20	MOD	86.5	85.3	77.9
	New MOD	86.9	85.8	77.1
	K-SVD	88.3	87.5	83.5
	New K-SVD	88.4	88.2	82.9
30	MOD	89.1	86.6	83.4
	New MOD	89.6	88.4	85.7
	K-SVD	90.5	89.5	86.2
	New K-SVD	91.7	90.4	86.8
100	MOD	90.1	88.3	85.8
	New MOD	90.3	88.6	86.8
	K-SVD	92.3	90.7	89.5
	New K-SVD	92.4	91.1	89.6

Table 1. Percentage of successful recovery rate in the first scenario where the states are activated almost independently from each other.

s.t.
$$\|\mathbf{d}_n\|_2 = 1, \ 1 \le n \le N$$

2. Considered Model

✓ **Target:** Performing dictionary learning when the training signals are not statistically independent, and have the first-order Markovian dependency.

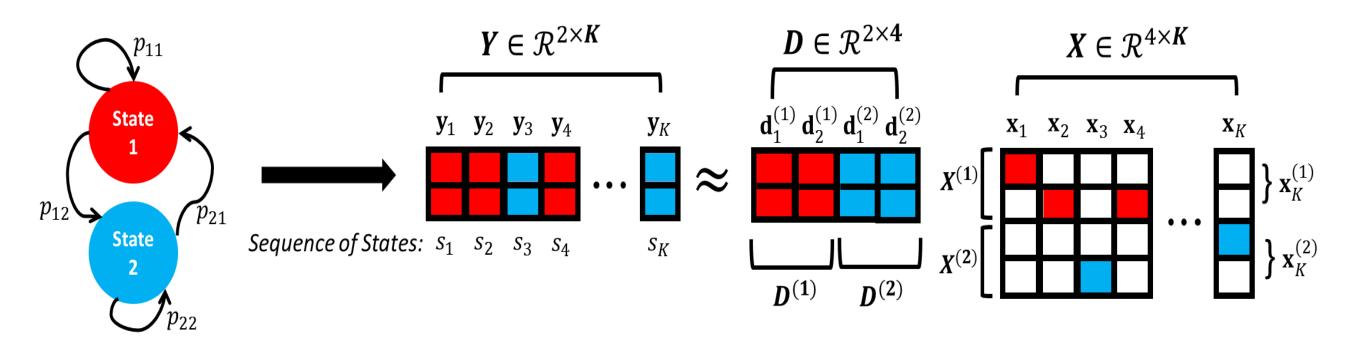


Fig 2. Schematic diagram of the considered model for dictionary learning problem.

• The set of unknown parameters: $\Omega = \{\mathbf{P}, \mathbf{D}, \mathbf{X}\} \cup \{s_1, s_2, ..., s_K\}$ \mathbf{y}_{k-1} Important Factors: $d_1^{(2)}$ ✤ Signal to noise ratio (SNR)

> Second Scenario: Dependent training signals.

$$\mathbf{P}_2 = \begin{bmatrix} 0.95 & 0.05 \\ 0.10 & 0.90 \end{bmatrix}$$

SNR_{dB}	Method	$N_0 = 3$	$N_0 = 4$	$N_0 = 5$
10	MOD	70.3	63.6	$\simeq 0$
	New MOD	81.4	71.9	4.6
	K-SVD	75.6	69.3	3.9
	New K-SVD	82.8	83.1	14.4
20	MOD	75.3	68.4	51.8
	New MOD	87.1	84.9	77.2
	K-SVD	79.6	76.4	72.4
	New K-SVD	88.8	86.5	81.6
30	MOD	85.6	84.2	80.6
	New MOD	88.6	87.7	86.4
	K-SVD	89.8	86.7	83.1
	New K-SVD	92.1	91.3	85.9
100	MOD	88.2	87.1	84.9
	New MOD	89.8	87.5	85.1
	K-SVD	91.3	90.1	88.2
	New K-SVD	92.5	92.3	88.7

Table 2. Percentage of successful recovery rate in the first scenario where the states are dependent.

7. Conclusion

Dependency among the training signals degrade the performance

of current dictionary learning algorithm.

\checkmark We investigated the dictionary learning problem when there is the

Fig 3. In the considered model, assigning y_k to one of the atoms is not independent form the activated state (or atom) for y_{k-1} .

first-order Markovian model in the generation of signals.