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Introduction

Objective
Severe convective weather like thunder storms cause significant harm for electricity supply

in Finland.
Prediction of damages caused by extreme weather events is crucial for operators.
We designed real-time prediction of short-term damage potential.

Overall Method

Figure 1: We have used the methods developed in [1] for overall process.

Classification

Convective weather are categorised based
on how large share of transformers under the
storm are without electricity.

Four categories listed in table 1.
Definition of categories convenient

for the end user (power grid operators).

Table 1: Class definitions of the storm cells

Class Share of
transformers

Number of
samples

0 no damage 551 029
1 0 - 10 % 4 919
2 10 - 50 % 4 286
3 50 - 100 % 3 337

Data

• Consists of two components: weather data by FMI and outage recordings by power grid operator
• Weather data collected by FMI during years 2012 to 2017 with 5 minutes resolution
• Contoured storm cells characterised by the list of features listed in Table 2
• The data is very imbalanced (see Figure 2)

Features

Table 2: Used input features

Feature Explanation
Area Area covered by the storm cell
Age Age of the storm
Lightning density Lightning density under storm cell
Max DBZ Maximum radar reflectivity of the storm cell (spatially). Rep-

resents maximum rain intensity.
Min DBZ Minimum radar reflectivity of the storm cell (spatially). Rep-

resents minimum rain intensity.
Mean DBZ Mean radar reflectivity of the storm cell (spatially)
Median DBZ Median radar reflectivity of the storm cell (spatially)
Std of DBZ Standard deviation of radar reflectivity of the storm cell (spa-

tially)
Lat Storm center latitude
Lon Storm center longitude
Temperature Air temperature from ground observations
Pressure Air pressure from ground observations
Wind speed Wind speed from ground observations
Wind direction Wind direction from ground observations
Precipitation amount Precipitation amount from ground observations
Snow depth Snow depth from ground observations

Labels
• Outage data and power grid description are fetched from two power distribution companies.
• The data set contains in total 33 858 observed outages.

– Many of observed outages not related to weather (reason not known)
– Severe storms cause hundreds of outages

Figure 2: Histogram of storm cells belonging to different classes in train dataset

Classification Methods

Consider two alternative methods for classification.
1. Random Forest Classificator (RFC):

• No limitations in tree size.
• Forrest with 200 trees and equal class weights.
• Gini impurity used as a loss function.
• Works sufficiently with imbalanced data (no SMOTE or other techniques needed).

2. Multi Layer Perceptron (MLP):
• Cross entropy used as loss function.
• Imbalanced classes was handled with synthetic minority over-sampling technique (SMOTE) [2].
• Hyper parameters shown in the table 3.
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Figure 3: Network structure of MLP

Table 3: Hyperparameters of
the MLP

Parameter Value
Batch size 256
Epoch count 1000
Dropout
probability

10 %

α (learning rate) 0.001
β1 (exp decay for
momentum)

0.9

β2 (exp decay for
momentum)

0.999

ε (stability
constant)

10−8

Initial decay no decay

Results

RFC and MLP allow to reasonably predict amount of damage.
RFC shows slightly better performance.

Metrics MLP
SMOTE

RFC

AUC 96 % 99 %
Validation accuracy 89 % 96 %
F1 score micro average 71 % 99 %

Figure 4: Confusion matrix of RFC Figure 5: Confusion matrix of MLP

Conclusion

Random Forest Classifier allows for reasonable prediction of weather based elec-
tricity outages.

Future Work
• Use more advanced time-series models (recurrent neural networks)
• Combine our approach with Rate-Transfer algorithm [3] to cope with imbalanced data.
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