PREDICTING ELECTRICITY OUTAGES CAUSED BY CONVECTIVE STORMS

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Value

256

1000

10 %

0.001

0.999

 10^{-8}

no decay

0.9

Roope Tervo roope.tervo@fmi.fi

joonas.karjalainen@fmi.fi

Joonas Karjalainen

Alexander Jung

alex.jung@aalto.fi

Introduction

Objective

Severe convective weather like thunder storms cause significant harm for electricity supply in Finland.

Prediction of damages caused by extreme weather events is crucial for operators. We designed real-time prediction of short-term damage potential.

Overall Method

Contour areas with strong DBZ from

Cluster storm cells

Classify the Track movement storm cells

Predict future outages

Classification Methods

Consider two alternative methods for classification.

- **1. Random Forest Classificator** (RFC):
 - No limitations in tree size.
 - Forrest with 200 trees and equal class weights.
 - Gini impurity used as a loss function.
 - Works sufficiently with imbalanced data (no SMOTE or other techniques needed).
- 2. Multi Layer Perceptron (MLP):
 - Cross entropy used as loss function.
 - Imbalanced classes was handled with synthetic minority over-sampling technique (SMOTE) [2].
 - Hyper parameters shown in the table 3.

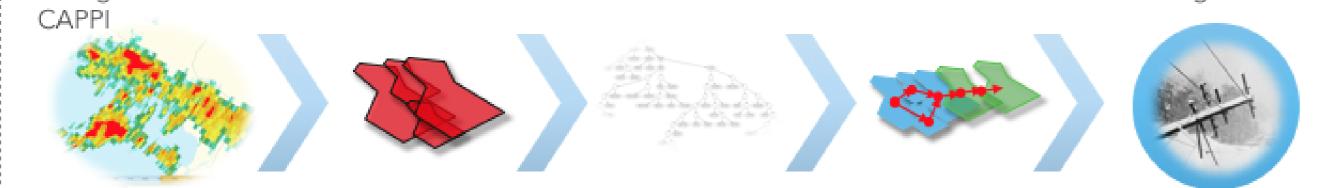


Figure 1: We have used the methods developed in [1] for overall process.

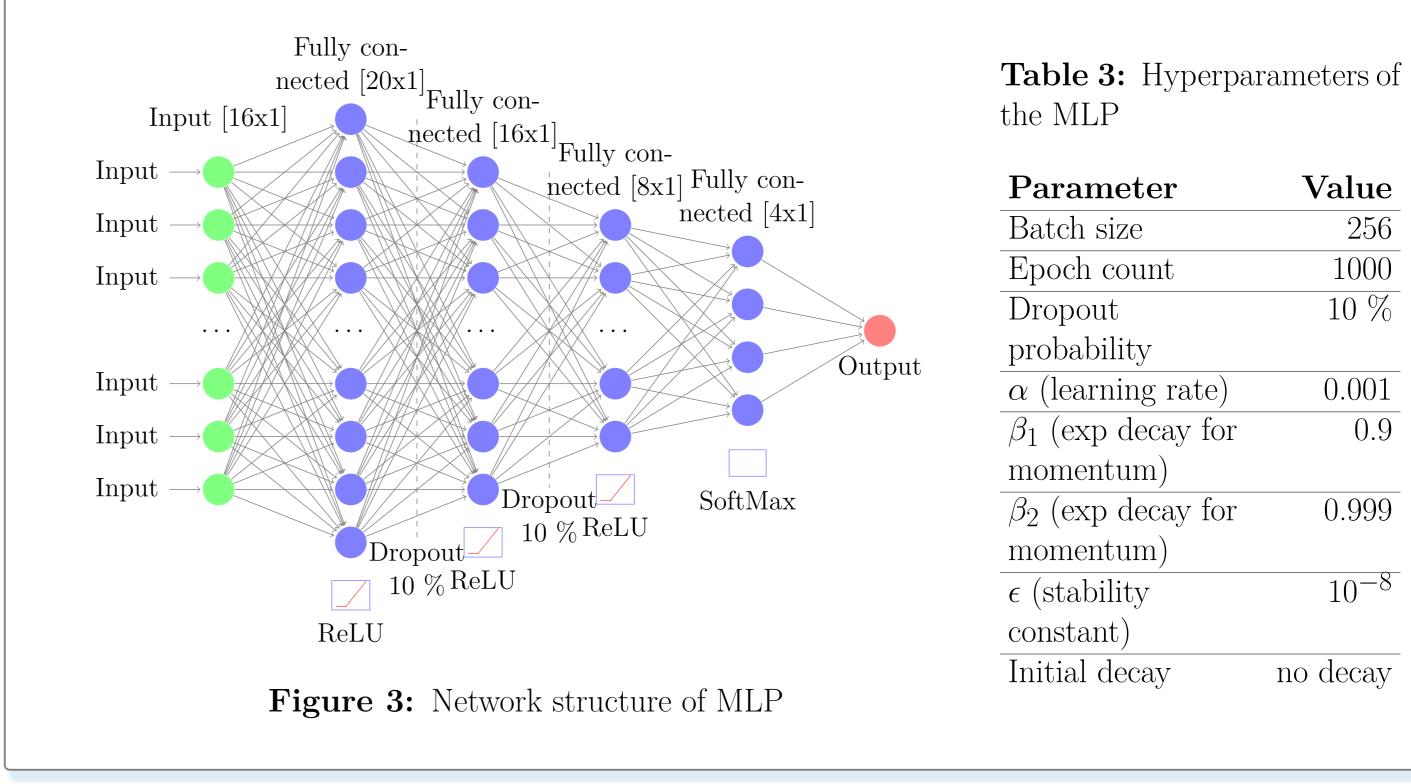
Classification

Convective weather are categorised based
on how large share of transformers under the
storm are without electricity.
Four categories listed in table 1.
Definition of categories convenient
for the end user (power grid operators).

Table 1	L: Class definitions of	of the storm cells
Class	Share of	Number of
	transformers	$\mathbf{samples}$
0	no damage	551 029
1	0 - 10 %	4 919
2	10 - 50 %	4 286
3	50 - 100 %	3 337

Data

- Consists of two components: weather data by FMI and outage recordings by power grid operator
- Weather data collected by FMI during years 2012 to 2017 with 5 minutes resolution
- Contoured storm cells characterised by the list of features listed in Table 2
- The data is very imbalanced (see Figure 2)



Results

RFC and MLP allow to reasonably predict amount of damage.

RFC shows slightly better performance.

Metrics	\mathbf{MLP}	\mathbf{RFC}
	SMOTE	
AUC	96 %	99~%

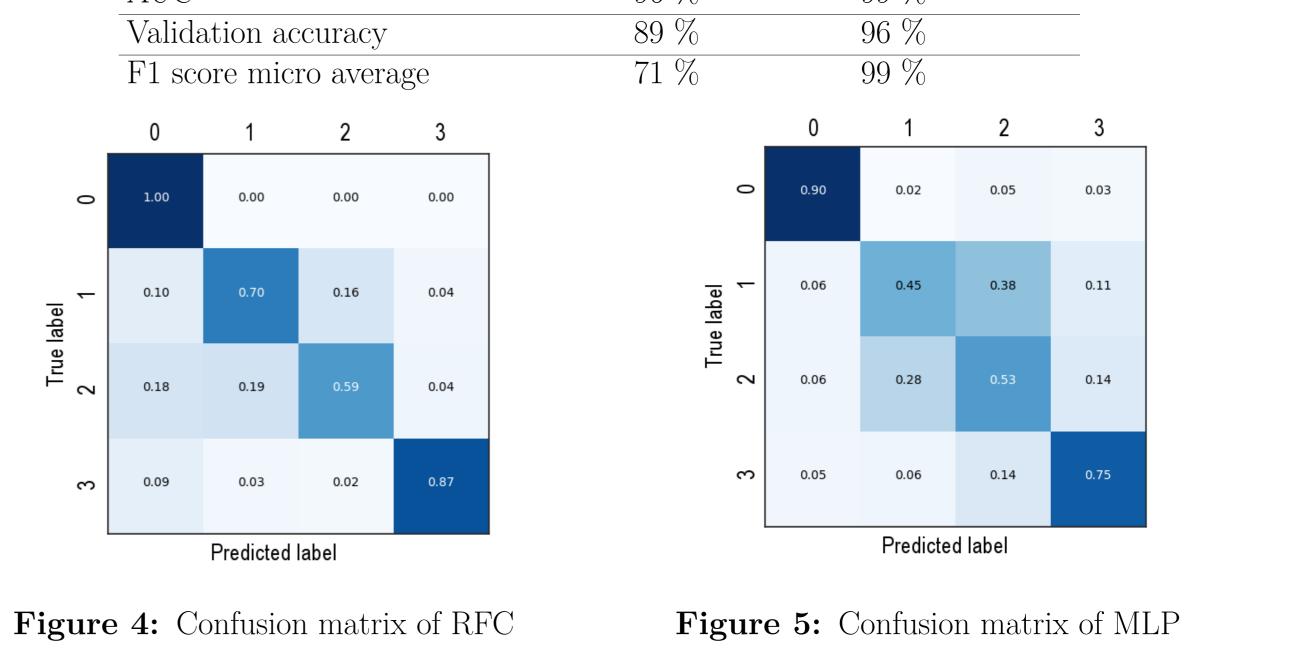
Table 2: Used input features			
Feature	Explanation		
Area	Area covered by the storm cell		
Age	Age of the storm		
Lightning density	Lightning density under storm cell		
Max DBZ	Maximum radar reflectivity of the storm cell (spatially). Rep		
	resents maximum rain intensity.		
Min DBZ	Minimum radar reflectivity of the storm cell (spatially). Rep		
	resents minimum rain intensity.		
Mean DBZ	Mean radar reflectivity of the storm cell (spatially)		
Median DBZ	Median radar reflectivity of the storm cell (spatially)		
Std of DBZ	Standard deviation of radar reflectivity of the storm cell (spatially)		
Lat	Storm center latitude		
Lon	Storm center longitude		
Temperature	Air temperature from ground observations		
Pressure	Air pressure from ground observations		
Wind speed	Wind speed from ground observations		
Wind direction	Wind direction from ground observations		
Precipitation amount	Precipitation amount from ground observations		
Snow depth	Snow depth from ground observations		

Labels

• Outage data and power grid description are fetched from two power distribution companies.

• The data set contains in total 33 858 observed outages.

- Many of observed outages not related to weather (reason not known)



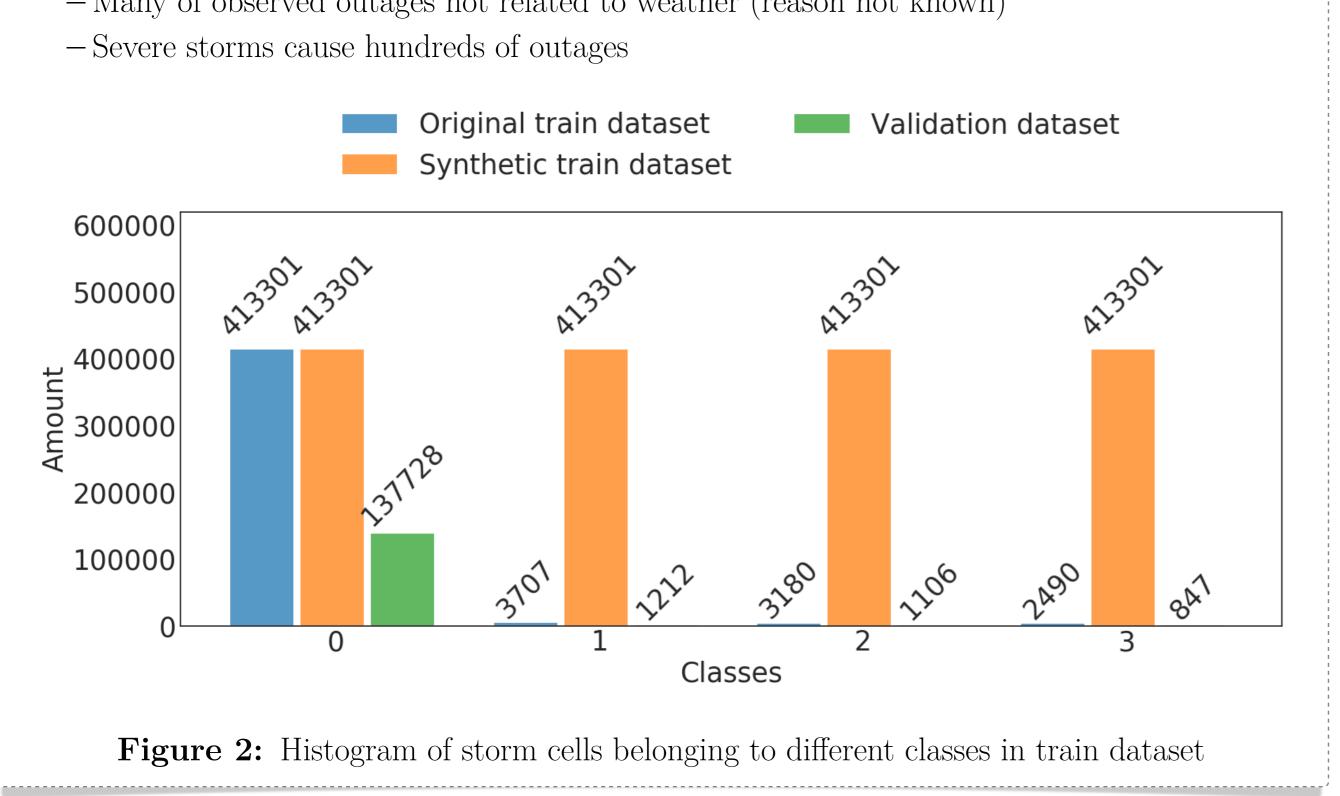
Conclusion

Random Forest Classifier allows for reasonable prediction of weather based electricity outages.

Future Work

• Use more advanced time-series models (recurrent neural networks)

• Combine our approach with Rate-Transfer algorithm [3] to cope with imbalanced data.



References

[1] Pekka Juhana Rossi, Object-Oriented Analysis and Nowcasting of Convective Storms in Finland, Ph.D. thesis, Aalto University, 2015.

[2] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer, "Smote: synthetic minority" over-sampling technique," Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.

[3] Samir Al-Stouhi and Chandan K Reddy, "Transfer learning for class imbalance problems with inadequate data," Knowledge and information systems, vol. 48, no. 1, pp. 201–228, 2016.

Acknowledgements

We are grateful for the project partners for funding, data and expertise: Järvi-Suomen Energia, Loiste Sähköverkko and Imatran seudun sähkösiirto.

