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Massive UAV-to-Ground Communications: A Mean Field Approach

Introduction System Model & Problem formulation (2/2)

- Cellular connections in our everyday life are about to be ubiquitously reliable in 5G Mean-field game theoretic flocking design
cellular systems. The remaining cellular coverage holes would come from disaster P1 . ¢ ;
scenarios, which significantly disrupt the search and rescue operations [1]. (P1) Yi(t) = 11% ) Ji(t),

- To fill these holes quickly and efficiently, it is envisaged to utilize unmanned aerial subject to  dz;(t) = (v;(t) + A)dt + nadW;(t)

vehicles (UAVs) that support air-to-ground cellular communications

* We focus particularly on an urban disaster scenario requiring a large number of

emergency connections that are enabled by a massive number of UAVSs. %% * Righ complexity
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UAV velocity control algorithm.
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Fig. 1. An illustration of a UAV-to-ground cellular network that HJB equation n%
supports the ground users crowded around a disaster hotspot. « Each UAV movement 0 = dym(z(t)) + (v(t) + A)V.m(2(t)) — m(z(t)),
- Optimal velocity decision (11)
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» We consider an air-to-ground downlink Ri(z: (1) Wy fz (1 /v +z: () —2(2)][2)3
network comprising N UAVs at an ‘%’) S S .. SO 4 perial
Identical altitude of h meters. ‘ 8 - where m*(z(t)) and 1*(t) are the unique solutions of the FPK (3.11) and the following
- The coordinates of the j-th UAV at time t BelliCler
is denoted as zi(?) € R3. B W N \ - | modified HIB equation (3.13), respectively.

- We assume the wind dynamics follows an “Ground

Ornstein-Uhlenbeck process [2]:
dz;(t) = (vi(t) + A)dt + nadW;(2)

 The channel link between each UAV and the associated user follows from the UAV
channel model provided by the 3GPP specifications [3].
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- The path loss is stochastically determined by line-of-sight (LOS) and non-line-of-sight ' S e o 2z w0 O s B S R TR
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. - Concluding remarks

- We proposed an instantaneous movement control algorithm for massive unmanned

Collision-free but low data rate Collision taking with high data rate . _ - _ _ , _ _
aerial vehicles (UAVs) providing emergency connections in an urban disaster situation.
* Collision avoidance constraint & cost functions - Our algorithm minimizes the energy consumption per downlink rate, while avoiding
, * inter-UAV collision under a temporal wind dynamics.
N /t by D L(llz(t) — 2(0) [ < d)dt <e - Leveraging a mean-field game theoretic flocking approach, the control of each UAV
N only requires its own location and channel states, enabling a fully-distributed control
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