Adaptive Mode Switching Algorithm for Dual Mode SWIPT with Duty Cycle Operation

Sungkyunkwan Univ. (SKKU)
Engineering Research Center (ERC)
Jong Jin Park, Jong Ho Moon, Kang-Yoon Lee, and Dong In Kim
Motivation: Unified Design of WIT & WPT

<table>
<thead>
<tr>
<th>WIT</th>
<th>For unified SWIPT...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Information Transfer</td>
<td>- Low receive sensitivity (-60dBm)</td>
</tr>
<tr>
<td></td>
<td>- Long range (~km)</td>
</tr>
<tr>
<td></td>
<td>- Objective: Data rate</td>
</tr>
<tr>
<td></td>
<td>- Modulation and coding scheme (MCS)</td>
</tr>
<tr>
<td></td>
<td>- Requires wide range of receive sensitivity</td>
</tr>
<tr>
<td></td>
<td>- Duty cycle operation for self-powering</td>
</tr>
<tr>
<td></td>
<td>- Adaptive mode switching (MS) between ID and EH</td>
</tr>
<tr>
<td></td>
<td>- Needs R-E tradeoff optimization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WPT</th>
<th>Wireless Power Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>High receive sensitivity (over -10dBm)</td>
<td></td>
</tr>
<tr>
<td>Short range (~m)</td>
<td></td>
</tr>
<tr>
<td>Objective: Power efficiency</td>
<td></td>
</tr>
<tr>
<td>Power management module (PMM)</td>
<td></td>
</tr>
</tbody>
</table>
Motivation: RF-to-DC PCE of SWIPT

- To improve R-E tradeoff performance:
 - Cross-over of PCE!

→ Mode Switching btw. single/multi-tone
 - Single tone for high rate, short range
 - Multi-tone for low rate, long range

- Adaptable Mode Switching (MS) threshold (P_{th}) for flexible R-E tradeoff optimization

Main Contribution:

- Duty Cycle based Dual Mode SWIPT system
- Mixed time-scale Adaptive Mode Switching algorithm

*PCE: Power Conversion Efficiency
System Model: Dual Mode SWIPT

- **Dual Mode SWIPT Receiver**

 - **Energy Path**
 - Rectifier
 - DC-DC Converter
 - Battery

 - **Information Path**
 - Envelope Detector
 - Energy-level Detector
 - Decoder

 - **PAPE Path**
 - Envelope Detector
 - PAPR Estimator
 - Decoder

- **Harvested energy at Energy Path**
 \[E_{EH} = \frac{D_v}{D_v + 1} T_v \times \Phi_{EH}(P_R) \times P_R \]

- **Data rate at Information/PAPR Path**
 \[R_v = \begin{cases}
 \frac{1}{D_v + 1} (1 - p_{out}(M)) \log_2 M, & \text{for single tone} \\
 \frac{1}{D_v + 1 BT_m} \left(\frac{1}{1 - p_{out}(Q)} \right) \log_2 Q, & \text{for multi-tone}
 \end{cases} \]

 \[\Phi_{EH}: \text{Estimated PCE function} \]
 \[p_{out}: \text{Outage probability} \]
 \[M: \text{Modulation index} \]
 \[Q: \# \text{ of multi-tone} \]

- P_{th} is updated over each long-term window.

- Duty ratio (D_v) is calculated in each channel block.
System Model: Multi-tone/PAPR Modulation

- Example of PAPR modulation:

<table>
<thead>
<tr>
<th></th>
<th>2bits</th>
<th>N</th>
<th>$PAPR_{RX}$</th>
<th>F_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0 0]</td>
<td>1</td>
<td>2</td>
<td>${f_{(1)}}$</td>
<td></td>
</tr>
<tr>
<td>[0 1]</td>
<td>2</td>
<td>4</td>
<td>${f_{(1)}, f_{(2)}}$</td>
<td></td>
</tr>
<tr>
<td>[1 1]</td>
<td>3</td>
<td>6</td>
<td>${f_{(1)}, f_{(2)}, f_{(3)}}$</td>
<td></td>
</tr>
<tr>
<td>[1 0]</td>
<td>4</td>
<td>8</td>
<td>${f_{1}, f_{2}, f_{3}, f_{4}}$</td>
<td></td>
</tr>
</tbody>
</table>

- Receiver just estimates the PAPR value, thus low complexity and low energy consuming.

- The received PAPR at the PAPR estimator:

$$PAPR = \frac{\max_{t \in [0,T_m]} |y_{ID}(t)|^2}{\frac{1}{T_m} \int_{t} |y_{ID}(t)|^2 dt} \approx 2N$$
Adaptive Mode Switching Algorithm

- Adaptive MS control module do..
 - Adjust duty ratio (D_v) for self-powering (MS between ID/EH)
 - Proper mode selection between single tone and multi-tone
 - Optimize modulation index (M) and # of multi-tone (Q) for R-E tradeoff
 - Adaptable MS threshold (P_{th}) for flexible R-E tradeoff

Feedback MS information:
- Mode, M or Q

Outer Loop
- Estimate P_R
- Update P_{th}

Inner Loop
- Select mode $P_R \geq P_{th}$
- Find feasible index $P_b \leq P_{tag}$
- Compute D_v
- D_v, M or Q

Global Optimization

(P1): $\max_{P_{th}} E_v[R_v]$
\hspace{1cm} s.t. $E_{EH} \geq E_{C,i}$
\hspace{1cm} $P_b \leq P_{tag}$

Long-term Optimization

(P2): $\max_{P_{th}} E_v[R_v^+]$

Short-term Optimization

(P3): $\max_{D_v} R_v$
\hspace{1cm} s.t. $D_v \geq \frac{P_{C,i}}{P_{EH}}$
\hspace{1cm} $P_b \leq P_{tag}$

- Outer loop: Update P_{th} \rightarrow MS between single and multi-tone
- Inner loop: Update D_v, M or Q \rightarrow MS between ID and EH
Adaptive Mode Switching Algorithm

- Mode selection example:

<table>
<thead>
<tr>
<th>Case</th>
<th>Operation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Short range, large M for high data rate</td>
</tr>
<tr>
<td>B</td>
<td>Single tone but outage occurred, switch to multi-tone SWIPT</td>
</tr>
<tr>
<td>C</td>
<td>Multi-tone SWIPT, small Q for R-E tradeoff</td>
</tr>
<tr>
<td>D</td>
<td>Long range, large Q for self-powering</td>
</tr>
<tr>
<td>E</td>
<td>Self-powering infeasible, WPT only with maximum Q</td>
</tr>
</tbody>
</table>

Boundary between single and multi-tone is subject to change as P_{th} is updated via each long-term optimization (P2).
Channel estimation affects power consumption:

- As β increases, the rate is penalized since more power is required.
- Large β forces P_{th} to be increased → more likely multi-tone mode selection.

### Parameter	Value
Fading channel | Frequency-flat Rayleigh fading, 900MHz center freq.
Path-loss exponent | 2.5
Transmit power | 40dBm
Bandwidth | 1MHz
Noise power | -130dBm/Hz
Smoothing parameter | 0.3472
Circuit power consumption | Single tone 0.2mW, Multi-tone 0.12mW
Target BER | 0.01

β: the ratio of power consumption for channel estimation to that for information decoding (i.e., $\beta = \frac{P_{ch,est}}{P_{C,s}}$).