Comparison of Limited Feedback Schemes for NOMA Transmission in mmWave Drone Networks

Nadisanka Rupasinghe, Yavuz Yapici, Ismail Guvenc and Yuichi Kakishima

Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC

DOCOMO Innovations, Inc., Palo Alto, CA
Motivation

- Unmanned aerial vehicles (UAVs) can be used as aerial base stations (BSs) to deliver wireless connectivity during temporary events.
- Since UAV-BSs are low power nodes, achieving higher energy efficiency (EE) and spectral efficiency (SE) are of paramount importance.
- Further, efficient placement of UAV-BSs is important to reap the maximum capacity and coverage benefits.

UAV-BSs serving during a fire

UAV-BSs serving at a stadium
Objectives

- Introduce *non-orthogonal multiple access* (NOMA) to UAVs for hot spot scenario
- Introduce NOMA *beamforming* to serve multiple users within single UAV beam
- Understand NOMA performance with angle, distance feedbacks
- Understand NOMA performance with different ordering criteria for *angle feedback*
- Investigate the impact of user region geometry on the NOMA feedback scheme
Non-Orthogonal Multiple Access (NOMA)

- BS superposes messages of both users together and generate DL signal

- Strong user first perform successive-interference-cancellation (SIC) and then decodes his data

- Weak user directly decodes his data considering strong user’s data as noise
System Model

- Each UAV-BS: M elements array, Each MS: single antenna
- User region: Δ, L_1, L_2 with K users
- User set, $\mathcal{N}_U = \{1, \cdots K\}$
- Users are distributed following a HPPP
- MISO channel vector, h_k ($M \times 1$) between UAV-BS and k-th MS in user region:

 $$h_k = \frac{\sqrt{M} \alpha_k a(\theta_k)}{\sqrt{\text{PL} \left(\sqrt{d_k^2 + h^2} \right)}}$$

 α_k: Complex gain of line of sight (LoS) path
 θ_k: Angle-of-departure
NOMA Operation with Beamforming

- UAV-BS generates beam $\mathbf{b} = a(\bar{\theta})$ with AoD, $\bar{\theta} \in \{0, 2\pi\}$

- k-th user’s effective channel gain $|\mathbf{h}_k^H \mathbf{b}|^2$, with respect to UAV-BS beam \mathbf{b} is

$$|\mathbf{h}_k^H \mathbf{b}|^2 \approx \frac{|\alpha_k|^2}{M \times PL \left(\sqrt{d_k^2 + h^2} \right)} \left| \sin \left(\frac{\pi M (\bar{\theta} - \theta_k)}{2} \right) \right|^2 = \frac{\left| \alpha_k \right|^2}{PL \left(\sqrt{d_k^2 + h^2} \right)} F_M \left(\bar{\theta} - \theta_k \right)$$

Small scale fading

$F_M(\cdot)$: Fejer-Kernel

- Effective channel gain is a measure of the channel quality
NOMA for UAV-BS Downlink (1)

- Users are ordered from best to worst w.r.t their channel quality based on some criteria
 \[q_1 > q_2 \cdots > q_K \]
 \hspace{1cm} (2)

- UAV-BS transmits signal \(x \), by superposing messages of \(\mathcal{N}_N \subset \mathcal{N}_U \) NOMA users
 \[x = \sqrt{P_{Tx}} \mathbf{b} \sum_{k \in \mathcal{N}_N} \beta_k s_k \]
 \hspace{1cm} (3)

 \(\beta_k \) : \(k \)-th user power allocation coefficient
 \(s_k \) : \(k \)-th user message
 \(P_{Tx} \) : Transmit power

- \(k \)-th user receives signal \(y_k \) in the downlink
 \[y_k = h_k^H x + v_k = \sqrt{P_{Tx}} h_k^H \mathbf{b} \sum_{k \in \mathcal{N}_N} \beta_k s_k + v_k \]
 \hspace{1cm} (4)

 \(v_k \) : Noise at \(k \)-th user
NOMA for UAV-BS Downlink (2)

- k-th user, first SIC and then decode its data

\[
\text{SINR}_{m\rightarrow k} = \frac{P_{Tx}|h_k^Hb|^2\beta_m^2}{P_{Tx} \sum_{l<m, l \in \mathcal{N}_N} |h_k^Hb|^2\beta_l^2 + N_0}.
\]

- Assuming each user has a \textit{quality-of-service (QoS) based target rate} \bar{R}_k, outage probability at k-th user can be given as

\[
P^0_{k|S_K} = 1 - \Pr \left(\bigcap_{l \geq k, l \in \mathcal{N}_N} R_{l\rightarrow k} > \bar{R}_l \mid S_K \right) = 1 - \Pr \left(\bigcap_{l \geq k, l \in \mathcal{N}_N} \text{SINR}_{l\rightarrow k} > \epsilon_l \mid S_K \right),
\]

where $\epsilon_k = 2^{\bar{R}_k} - 1$ and S_K captures given condition on K

- Outage sum rate when S_K denotes range of integers

\[
\bar{R}^{\text{NOMA}} = \sum_{\tau \geq 2} \Pr \{S_{K\tau}\} \sum_{k \in \mathcal{N}_N} (1 - P^0_{k|S_{K\tau}}) \bar{R}_k = \sum_{k \in \mathcal{N}_N} (1 - P^0_k) \bar{R}_k.
\]
Limited Feedback and User Ordering Strategy for NOMA

- We consider two limited feedback schemes as captured in (1)
 - Distance
 - Angle with respect to boresight direction of the beam

- Based on above feedback schemes, three user ordering strategies are considered
 - Distance based ordering: \[d_1 \leq d_2 \leq \cdots \leq d_K \]
 - Fejer-Kernel based ordering: \[F_M(\theta_1) \geq F_M(\theta_2) \geq \cdots \geq F_M(\theta_K) \]
 - Absolute angle based ordering: \[\tilde{\theta}_1 \leq \tilde{\theta}_2 \leq \cdots \leq \tilde{\theta}_K \] where \[\tilde{\theta}_k = |\bar{\theta} - \theta_k| \]
Outage Probability with Limited Feedback

- Outage probability in (6) can be given as,

\[P_{k|S_K}^o = P \{ |h_k^2 b|^2 < x \} = \int_{u_{\text{min}}}^{u_{\text{max}}} \int_{L_1}^{L_2} P \{ |h_k^2 b|^2 < x \mid d_k, \theta_k \} f_{d_k, \theta_k}(d, \theta) \, dd \, d\theta, \quad (8) \]

\[
\downarrow \quad \text{The distance and angle of an arbitrary user are statistically independent of each other}
\]

\[
P_k^o = \int_{u_{\text{min}}}^{u_{\text{max}}} \int_{L_1}^{L_2} P \{ |h_k^2 b|^2 < x \mid r, \theta \} f_{d_k}(r)f_{\theta_k}(\theta) \, dr \, d\theta \quad (9)
\]

- \(f_{d_k}(r), f_{\theta_k}(\theta) \) under different ordering criteria have been derived to evaluate outage probabilities analytically using (9)
Impact of Ordering Strategy on Distance and Angle Distributions

- When the user ordering criteria is a function of a particular variable, that variable alters its unordered original distribution.
- The other variable(s) follows its unordered original distribution.

Ordered k-th user angle and distance distribution ($k = 20$)
Simulation Settings

Two users are considered for NOMA transmission

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User distribution</td>
<td>Uniform</td>
</tr>
<tr>
<td>Outer radius, L_2</td>
<td>100 m</td>
</tr>
<tr>
<td>Inner radius, L_1</td>
<td>85 m</td>
</tr>
<tr>
<td>Horizontal angular width, Δ</td>
<td>$1^\circ, 5^\circ$</td>
</tr>
<tr>
<td>Vertical beamwidth, φ_e</td>
<td>28$^\circ$</td>
</tr>
<tr>
<td>HPPP density, λ</td>
<td>1</td>
</tr>
<tr>
<td>Number of BS antennas, M</td>
<td>100</td>
</tr>
<tr>
<td>Noise, N_0</td>
<td>-35 dBm</td>
</tr>
<tr>
<td>Path-loss exponent, γ</td>
<td>2</td>
</tr>
<tr>
<td>jth user target rate, \bar{R}_j</td>
<td>6 BPCU</td>
</tr>
<tr>
<td>ith user target rate, \bar{R}_j</td>
<td>0.5 BPCU</td>
</tr>
<tr>
<td>jth user power allocation, β_j^2</td>
<td>0.25</td>
</tr>
<tr>
<td>ith user power allocation, β_i^2</td>
<td>0.75</td>
</tr>
<tr>
<td>UAV-BS operation altitude, h</td>
<td>10 m - 150 m</td>
</tr>
</tbody>
</table>

We compare NOMA performance with orthogonal multiple access (OMA)
Sum Rates: NOMA vs OMA

Sum rates variation: $j=20$, $i=25$, $\Delta = 5$ deg
Sum Rates: Fejer-Kernel and Distance based Ordering

Sum rates variation: $j=20$, $i=25$

PDFs of Fejer-Kernel distribution
Sum Rates: Angle and Fejer-Kernel based Ordering

Sum rates variation: $\Delta = 5$ deg

PDFs of Angle Distribution
Variation of the Support of Angle PDFs

Support of the user angle PDFs: $K = 125$
Sum Rates Variation with User Region Geometry

Distance ordering

Fejer-Kernel ordering

Rate difference (Distance-Fejer-Kernel)

Sum rates with different user region geometries:

\[h = 50 \text{ m}, P_{\text{Tx}} = 10 \text{ dBm} \]
Conclusion

- NOMA with beamforming enhances spectral efficiency of UAV-BSs
- NOMA with angle, distance feedback provide better sum rates compared to OMA
- Feedback scheme for NOMA needs to be determined considering user region geometry
- If Fejer-Kernel function is monotonically varying over the angle support of NOMA users, both Fejer-Kernel and angle based ordering provide similar sum rates