Semantics-guided Data Hallucination for Few-shot Visual Classification

Chia-Ching Lin1,2 Yu-Chiang Frank Wang1 Chin-Laung Lei1 Kuan-Ta Chen2

1Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
2Institute of Information Science, Academia Sinica, Taipei, Taiwan

INTRODUCTION

- Few-shot learning (FSL): only few samples would be available for selected object categories during learning
 - Base classes: each has a sufficient amount of training samples
 - Novel classes: each has a limited amount of training samples
- Data hallucination: generate additional training samples for novel classes based on intra-class variation learned from base classes

PROPOSED MODEL

- Training
 - Stage 1 (representation learning on D_{base}): train the feature extractor ϕ and the hallucinator H by meta-learning
 - Stage 2 (few-shot learning on $D_{\text{base}} \cup D_{\text{novel}}$): use the trained H to augment additional training samples for C_{novel} and use the augmented dataset to train the final classifier V

EXPERIMENTS

- Top-5 accuracy of V
 - CIFAR-100: $|C_{\text{fin base}}| = 30, |C_{\text{fin novel}}| = 20$

NOTATIONS

- D_{base}: dataset of base classes C_{base}
- D_{novel}: dataset of novel classes C_{novel}
- Both datasets consist of tuples $((x_i, y_i, R_i))$
 - x_i: the i-th image
 - y_i: the one-hot label vector
 - R_i: the semantic information associated with y_i
- CIFAR-100: a word embedding vector of the label name
- Animals with Attributes: an attribute vector

CONCLUSION

- We incorporate semantic information into the data hallucination process to generate additional training data that exhibit semantics-oriented modes of variation for improved FSL performances