When can a System of Subnetworks be Registered Uniquely?

Aditya V. Singh  Kunal N. Chaudhury

Department of Electrical Engineering
Indian Institute of Science

May 15, 2019
Sensor network localization

Need to deduce observers’ transforms
System of equations

GIVEN

Nodes: 1, \ldots, N \quad \text{(in } \mathbb{R}^d) \quad \text{ Nodes: 1, \ldots, N (in } \mathbb{R}^d) \quad \text{P}_i \subset \{1, \ldots, N\}

Patches: P_1, \ldots, P_M

x_{k,i}: \text{ local coordinate of node } k \text{ if } k \in P_i

\mathbf{x}_{k,i}: \text{ local coordinate of node } k \text{ if } k \in P_i

UNKNOWNS

\mathbf{z}_k: \text{ global coordinate of node } k
\mathcal{R}_i: \text{ rigid transform corresponding to } P_i, \text{ i.e. if } k \in P_i

\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}) = \mathbf{O}_i \mathbf{x}_{k,i} + \mathbf{t}_i

Registration Problem

Find \mathbf{z}_1, \ldots, \mathbf{z}_N, \mathcal{R}_1, \ldots, \mathcal{R}_M \text{ such that}

\mathbf{z}_k = \mathcal{R}_i(\mathbf{x}_{k,i}), \quad k \in P_i, \quad i \in [1 : M]. \quad \text{(REG)}
System of equations

GIVEN

Nodes: 1, \ldots, N \quad (in \ \mathbb{R}^d)

Patches: P_1, \ldots, P_M

x_{k,i}: \text{local coordinate of node } k \text{ if } k \in P_i

UNKNOWNs

z_k: \text{global coordinate of node } k
\mathcal{R}_i: \text{rigid transform corresponding to } P_i, \text{ i.e. if } k \in P_i

z_k = \mathcal{R}_i(x_{k,i}) = O_i x_{k,i} + t_i

Registration Problem

Find z_1, \ldots, z_N, \mathcal{R}_1, \ldots, \mathcal{R}_M \text{ such that}

z_k = \mathcal{R}_i(x_{k,i}), \quad k \in P_i, \quad i \in [1 : M]. \quad (\text{REG})
Registration Problem

Find $z_1, \ldots, z_N, R_1, \ldots, R_M$ such that

$$z_k = R_i(x_k, i), \quad k \in P_i, \quad i \in [1 : M].$$

(REG)
Registration Problem

Find $z_1, \ldots, z_N, R_1, \ldots, R_M$ such that

$$z_k = R_i(x_{k,i}), \quad k \in P_i, \quad i \in [1 : M].$$

Original network

<table>
<thead>
<tr>
<th>Observer</th>
<th>Node</th>
<th>Data</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$x_{1,1}$</td>
<td>$z_1$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$x_{2,1}$</td>
<td>$z_2$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>$x_{3,1}$</td>
<td>$z_3$</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>$x_{4,2}$</td>
<td>$z_4$</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>$x_{5,2}$</td>
<td>$z_5$</td>
</tr>
</tbody>
</table>

Given data
Registration Problem

Find $z_1, \ldots, z_N, R_1, \ldots, R_M$ such that

$$z_k = R_i(x_k, i), \quad k \in P_i, \quad i \in [1 : M].$$

Original network

<table>
<thead>
<tr>
<th>Node</th>
<th>Observer 1</th>
<th>Observer 2</th>
<th>Observer 3</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>node 1</td>
<td>$x_{1,1}$</td>
<td>$x_{1,2}$</td>
<td></td>
<td>$z_1$</td>
</tr>
<tr>
<td>node 2</td>
<td>$x_{2,1}$</td>
<td></td>
<td>$x_{2,3}$</td>
<td>$z_2$</td>
</tr>
<tr>
<td>node 3</td>
<td>$x_{3,1}$</td>
<td></td>
<td>$x_{3,3}$</td>
<td>$z_3$</td>
</tr>
<tr>
<td>node 4</td>
<td></td>
<td>$x_{4,2}$</td>
<td>$x_{4,3}$</td>
<td>$z_4$</td>
</tr>
<tr>
<td>node 5</td>
<td></td>
<td>$x_{5,2}$</td>
<td>$x_{5,3}$</td>
<td>$z_5$</td>
</tr>
</tbody>
</table>
Registration Problem

Find $z_1, \ldots, z_N, \mathcal{R}_1, \ldots, \mathcal{R}_M$ such that

$$z_k = \mathcal{R}_i(x_k, i), \quad k \in P_i, \quad i \in [1 : M]. \quad \text{(REG)}$$

- Does a solution exist?
  Yes! Ground truth

- Is this solution unique ... up to congruence?
  We are interested only in relative positions and transformations
Original network

Given data

Reconstructed network

(a)  

(b)  

(c)
Theorem: Uniqueness of solution

Suppose, for \( \text{REG} \) in \( \mathbb{R}^d \)

A1. each patch contains at least \( d + 1 \) nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to \( \text{REG} \equiv \text{rigidity of the body graph} \)
Theorem: Uniqueness of solution

Suppose, for \( \text{REG in } \mathbb{R}^d \)

A1. each patch contains at least \( d + 1 \) nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to \( \text{REG} \equiv \text{rigidity of the body graph} \)
uniqueness of solution to \( \text{REG} \equiv \text{rigidity of the body graph} \)
uniqueness of solution to \( \text{REG} \equiv \) rigidity of the body graph

<table>
<thead>
<tr>
<th></th>
<th>observer 1</th>
<th>observer 2</th>
<th>observer 3</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>node 1</td>
<td>( \mathbf{x}_{1,1} )</td>
<td>( \mathbf{x}_{1,2} )</td>
<td></td>
<td>( \mathbf{z}_1 )</td>
</tr>
<tr>
<td>node 2</td>
<td>( \mathbf{x}_{2,1} )</td>
<td></td>
<td>( \mathbf{x}_{2,3} )</td>
<td>( \mathbf{z}_2 )</td>
</tr>
<tr>
<td>node 3</td>
<td>( \mathbf{x}_{3,1} )</td>
<td></td>
<td>( \mathbf{x}_{3,3} )</td>
<td>( \mathbf{z}_3 )</td>
</tr>
<tr>
<td>node 4</td>
<td></td>
<td>( \mathbf{x}_{4,2} )</td>
<td>( \mathbf{x}_{4,3} )</td>
<td>( \mathbf{z}_4 )</td>
</tr>
<tr>
<td>node 5</td>
<td></td>
<td>( \mathbf{x}_{5,2} )</td>
<td>( \mathbf{x}_{5,3} )</td>
<td>( \mathbf{z}_5 )</td>
</tr>
</tbody>
</table>
uniqueness of solution to \( \text{REG} \equiv \) rigidity of the body graph
uniqueness of solution to \( \text{REG} \equiv \) rigidity of the **body graph**

<table>
<thead>
<tr>
<th></th>
<th>observer 1</th>
<th>observer 2</th>
<th>observer 3</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>node 1</td>
<td><strong>x_{1,1}</strong></td>
<td><strong>x_{1,2}</strong></td>
<td></td>
<td><strong>z_1</strong></td>
</tr>
<tr>
<td>node 2</td>
<td><strong>x_{2,1}</strong></td>
<td></td>
<td><strong>x_{2,3}</strong></td>
<td><strong>z_2</strong></td>
</tr>
<tr>
<td>node 3</td>
<td><strong>x_{3,1}</strong></td>
<td></td>
<td><strong>x_{3,3}</strong></td>
<td><strong>z_3</strong></td>
</tr>
<tr>
<td>node 4</td>
<td></td>
<td><strong>x_{4,2}</strong></td>
<td><strong>x_{4,3}</strong></td>
<td><strong>z_4</strong></td>
</tr>
<tr>
<td>node 5</td>
<td></td>
<td><strong>x_{5,2}</strong></td>
<td><strong>x_{5,3}</strong></td>
<td><strong>z_5</strong></td>
</tr>
</tbody>
</table>
uniqueness of solution to \( \text{REG} \equiv \text{rigidity of the body graph} \)

<table>
<thead>
<tr>
<th>node</th>
<th>observer 1</th>
<th>observer 2</th>
<th>observer 3</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>node 1</td>
<td>( x_{1,1} )</td>
<td>( x_{1,2} )</td>
<td></td>
<td>( z_1 )</td>
</tr>
<tr>
<td>node 2</td>
<td>( x_{2,1} )</td>
<td></td>
<td>( x_{2,3} )</td>
<td>( z_2 )</td>
</tr>
<tr>
<td>node 3</td>
<td></td>
<td>( x_{3,3} )</td>
<td></td>
<td>( z_3 )</td>
</tr>
<tr>
<td>node 4</td>
<td>( x_{4,2} )</td>
<td>( x_{4,3} )</td>
<td></td>
<td>( z_4 )</td>
</tr>
<tr>
<td>node 5</td>
<td>( x_{5,2} )</td>
<td>( x_{5,3} )</td>
<td></td>
<td>( z_5 )</td>
</tr>
</tbody>
</table>
uniqueness of solution to $\text{REG} \equiv$ rigidity of the body graph

To test if this can be uniquely registered ...
Graph (embedding) rigidity: Setup

**GIVEN**

- undirected graph: $G = (V, E)$

- embedding of $G$ in $\mathbb{R}^d$: mapping $V \rightarrow \mathbb{R}^d$
Graph (embedding) rigidity: Setup

GIVEN

- undirected graph: $G = (V, E)$
- embedding of $G$ in $\mathbb{R}^d$: mapping $V \rightarrow \mathbb{R}^d$
Graph (embedding) rigidity: Setup

**GIVEN**

- undirected graph: $G = (V, E)$

- embedding of $G$ in $\mathbb{R}^d$: mapping $V \rightarrow \mathbb{R}^d$
Graph (embedding) rigidity: Setup

**GIVEN**

- undirected graph: $G = (V, E)$
- embedding of $G$ in $\mathbb{R}^d$: mapping $V \rightarrow \mathbb{R}^d$

**QUESTION:** Can we have an embedding which preserves edge lengths, but has a different shape?
Graph (embedding) rigidity: Setup

Given an undirected graph $G = (V, E)$:

- Embedding of $G$ in $\mathbb{R}^d$: mapping $V \rightarrow \mathbb{R}^d$.

**Question:** Can we have an embedding which preserves edge lengths, but has a different shape?
Graph (embedding) rigidity: Setup

**Question:** Can we have an embedding which preserves edge lengths, but has a different shape?
Graph (embedding) rigidity: Setup

**G** = \((\{1, 2, 3, 4\}, \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\})\)

**QUESTION:** Can we have an embedding which preserves edge lengths, but has a different shape?
Graph (embedding) rigidity: Setup

**Given**
- Undirected graph: $G = (V, E)$
- Embedding of $G$ in $\mathbb{R}^d$: mapping $V \to \mathbb{R}^d$

**Question:** Can we have an embedding which preserves edge lengths, but has a different shape?

**Diagram:**

$G = \left( \{1, 2, 3, 4\}, \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \right)$

**QUESTION:** Can we have an embedding which preserves edge lengths, but has a different shape?
Graph (embedding) rigidity: Graph vs Embedding

\[ G = \left( \{1, 2, 3, 4, 5\}, \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)\} \right) \]

This embedding is not rigid. But recall our theorem . . .

Suppose, for \( \text{reg} \) in \( \mathbb{R}^d \)

1. each patch contains at least \( d + 1 \) nodes
2. the nodes are in generic positions

Then uniqueness of solution to \( \text{reg} \) \( \equiv \) rigidity of the body graph.
Graph (embedding) rigidity: Graph vs Embedding

$$G = \left( \{1, 2, 3, 4, 5\}, \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)\} \right)$$
Graph (embedding) rigidity: Graph vs Embedding

\[ G = \left( \{1, 2, 3, 4, 5\}, \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)\} \right) \]

This embedding is **not rigid**
Graph (embedding) rigidity: Graph vs Embedding

\[ G = \left( \{1, 2, 3, 4, 5\}, \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)\} \right) \]

This embedding is not rigid

But recall our theorem . . .

Suppose, for \( \text{reg} \) in \( \mathbb{R}^d \)

- \( \text{A1.} \) each patch contains at least \( d + 1 \) nodes
- \( \text{A2.} \) the nodes are in generic positions

Then uniqueness of solution to \( \text{reg} \equiv \text{rigidity of the body graph} \)
Graph (embedding) rigidity: Graph vs Embedding

\[ G = \left( \{1, 2, 3, 4, 5\}, \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)\} \right) \]

This embedding is not rigid

This embedding is rigid

Suppose, for \( \Delta \in \mathbb{R}^d \), each patch contains at least \( d + 1 \) nodes. Then uniqueness of solution to \( \Delta \equiv \) rigidity of the body graph.
Graph (embedding) rigidity: Graph vs Embedding

\[ G = \left( \{1, 2, 3, 4, 5\}, \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)\} \right) \]

This embedding is not rigid.

But recall our theorem . . .

Suppose, for REG in \( \mathbb{R}^d \)

A1. each patch contains at least \( d + 1 \) nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to \( \text{REG} \equiv \text{rigidity of the body graph} \)
Graph (embedding) rigidity: Graph vs Embedding

\[ G = \left( \{1, 2, 3, 4, 5\}, \{(1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)\} \right) \]

But recall our theorem . . .

Suppose, for \( \text{REG} \) in \( \mathbb{R}^d \)

A1. each patch contains at least \( d + 1 \) nodes
A2. the nodes are in generic positions

Then

uniqueness of solution to \( \text{REG} \equiv \) rigidity of the body graph
Graph (embedding) rigidity: Generic embedding

Rigidity is a generic property

Given a graph, one of the following is true

- **every** generic embedding is rigid
- **every** generic embedding is non-rigid

Generic embedding $\implies$ rigidity becomes a **property of the graph**
To test if this can be uniquely registered ...
Theorem: Uniqueness of solution

Suppose, for \( \text{REG} \) in \( \mathbb{R}^d \)

A1. each patch contains at least \( d + 1 \) nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to \( \text{REG} \equiv \text{rigidity of the body graph} \)
Corollary for $d = 2$: REG in $\mathbb{R}^2$

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to REG $\equiv$ 3-connectivity of the body graph
Corollary for $d = 2$: $\text{REG}$ in $\mathbb{R}^2$

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to $\text{REG} \equiv$ 3-connectivity of the body graph

connected graph
\[ \exists \text{ path between every pair of vertices} \]

3-connected graph
remains connected if $\leq 3$ vertices removed
Corollary for $d = 2$: REG in $\mathbb{R}^2$

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to $\text{REG} \equiv$ 3-connectivity of the body graph

can be tested in linear time

3-connected graph remains connected if $\leq 3$ vertices removed
Corollary for $d = 2$: $\text{REG in } \mathbb{R}^2$

Suppose, in a two-dimensional network

A1. each patch contains at least 3 nodes

A2. the nodes are in generic positions

Then

uniqueness of solution to $\text{REG} \equiv 3$-connectivity of the body graph

can be tested in linear time

existing tests for 2D rigidity: quadratic time
Summary

- Registration problem: assign global coordinates to points based on partial observations in different local coordinate systems related via rigid transforms.

- Focus: when is the solution unique.

- Under mild assumptions: uniqueness equivalent to rigidity of the body graph.

- Corollary for 2D networks: need only test 3-connectivity (linear time).
Thank You