Proximal Multitask Learning Over Distributed Networks with Jointly Sparse Structure

Danqi Jin¹, Jie Chen¹, Cédric Richard² & Jingdong Chen¹

¹ CIAIC, Northwestern Polytechinical University, Xi'an, China
 ² Université de la Côte d'Azur, CNRS, France

Presented by: Danqi Jin 7th May 2020 for ICASSP 2020

danqijin@mail.nwpu.edu.cn; dr.jie.chen@ieee.org

cedric.richard@unice.fr; jingdongchen@ieee.org

- 2 Proximal Multitask Diffusion LMS
- **3** Proximal Operator Evaluation of $\ell_{\infty,1}$ Regularizer
- 4 Simulation Results

Consider a connected network consisting of N nodes. Each node k has access to streaming data $\{d_{k,n}, u_{k,n}\}$, which are related via the linear model:

$$d_{k,n} = \boldsymbol{u}_{k,n}^{\top} \boldsymbol{w}_{k}^{\star} + z_{k,n}.$$
⁽¹⁾

We assume that vectors $oldsymbol{w}_k^\star$ over the entire network are jointly sparse, namely:

$$\operatorname{supp}({oldsymbol w}_1^\star) = \cdots = \operatorname{supp}({oldsymbol w}_k^\star) = \cdots = \operatorname{supp}({oldsymbol w}_N^\star)$$
 (2)

where supp $(\boldsymbol{w}_k^{\star}) \triangleq \{j : [\boldsymbol{w}_k^{\star}]_j \neq 0\}$ is the support of \boldsymbol{w}_k^{\star} .

- 2 Proximal Multitask Diffusion LMS
- **3** Proximal Operator Evaluation of $\ell_{\infty,1}$ Regularizer
- 4 Simulation Results

PROXIMAL MULTITASK DIFFUSION LMS

Define the local parameter matrix:

$$\boldsymbol{W}_{k} \triangleq \left[\boldsymbol{w}_{k}, \ \boldsymbol{w}_{\ell}^{\star} \text{ with } \ell \in \mathcal{N}_{k}^{-}
ight] \in \mathbb{R}^{L \times |\mathcal{N}_{k}|}.$$
 (3)

To facilitate the following derivation we also denote W_k by

$$\boldsymbol{W}_{k} = \begin{bmatrix} \boldsymbol{\bar{w}}_{k,1}^{\top} & \cdots & \boldsymbol{\bar{w}}_{k,m}^{\top} & \cdots & \boldsymbol{\bar{w}}_{k,L}^{\top} \end{bmatrix}^{\top}, \tag{4}$$

where $\bar{w}_{k,m}$ is the *m*-th row of matrix W_k . We consider the regularized cost at node *k*:

$$J_k(\boldsymbol{w}_k) = J'_k(\boldsymbol{w}_k) + \lambda_k g(\boldsymbol{w}_k)$$
(5)

with $J'_k(\boldsymbol{w}_k) \triangleq \frac{1}{2} \mathbb{E} \left\{ |d_{k,n} - \boldsymbol{u}_{k,n}^\top \boldsymbol{w}_k|^2 \right\}$, and $g(\boldsymbol{w}_k) \triangleq \sum_{m=1}^L \|\bar{\boldsymbol{w}}_{k,m}\|_{\infty}$ evaluates the $\ell_{\infty,1}$ -norm of \boldsymbol{W}_k . At each node k, we then consider the convex optimization problem:

$$\boldsymbol{w}_{k}^{\dagger} = \operatorname*{argmin}_{\boldsymbol{w}_{k}} J_{k}(\boldsymbol{w}_{k}).$$
 (6)

Proximal gradient methods generate a sequence of estimates by the following iterations:

$$\boldsymbol{w}_{k,n+1} = \operatorname{prox}_{\mu_k \lambda_k g} \left(\boldsymbol{w}_{k,n} - \mu_k \nabla J'_k(\boldsymbol{w}_{k,n}) \right), \tag{7}$$

where μ_k is a positive small step-size, and the proximal operator is defined by

$$\operatorname{prox}_{\lambda g}(\boldsymbol{v}) \triangleq \operatorname{argmin}_{\boldsymbol{w}_{k}} \left(g(\boldsymbol{w}_{k}) + \frac{1}{2\lambda} \|\boldsymbol{w}_{k} - \boldsymbol{v}\|_{2}^{2} \right).$$
(8)

We obtain from (7) the **proximal multitask diffusion LMS algorithm** for jointly sparse networks:

$$\begin{cases} \boldsymbol{\psi}_{k,n+1} = \boldsymbol{w}_{k,n} + \mu_k \boldsymbol{u}_{k,n} (d_{k,n} - \boldsymbol{u}_{k,n}^\top \boldsymbol{w}_{k,n}) \\ \boldsymbol{w}_{k,n+1} = \operatorname{prox}_{\mu_k \lambda_k g} (\boldsymbol{\psi}_{k,n+1}) \end{cases}$$
(9)

- 2 Proximal Multitask Diffusion LMS
- **3** Proximal Operator Evaluation of $\ell_{\infty,1}$ Regularizer
- 4 Simulation Results

We need to derive a closed-form expression for the following proximal operator:

$$\boldsymbol{w}_{k,n+1} = \operatorname{prox}_{\mu_k \lambda_k g}(\boldsymbol{\psi}_{k,n+1})$$

= $\operatorname{argmin}_{\boldsymbol{w}_k} \left(g(\boldsymbol{w}_k) + \frac{1}{2\mu_k \lambda_k} \| \boldsymbol{w}_k - \boldsymbol{\psi}_{k,n+1} \|_2^2 \right).$ (10)

As $g(w_k)$ is separable over its all entries, its proximal operator can be evaluated in an element-wise manner as:

$$\left[\operatorname{prox}_{\mu_k \lambda_k g}(\psi_{k,n+1})\right]_m = \operatorname{prox}_{\mu_k \lambda_k g_m}([\psi_{k,n+1}]_m) \tag{11}$$

with $g_m([\boldsymbol{w}_k]_m) \triangleq \|\bar{\boldsymbol{w}}_{k,m}\|_{\infty}, [\boldsymbol{w}_k]_m$ is the *m*-th entry of \boldsymbol{w}_k , and $\bar{\boldsymbol{w}}_{k,m}$ is the *m*-th row of matrix \boldsymbol{W}_k in (3).

We have:

$$[\boldsymbol{w}_{k,n+1}]_{m} = \underset{[\boldsymbol{w}_{k}]_{m}}{\operatorname{argmin}} \left(\max\{|[\boldsymbol{w}_{k}]_{m}|, |[\boldsymbol{w}_{\ell}^{\star}]_{m}| \text{ with } \ell \in \mathcal{N}_{k}^{-} \} + \frac{1}{2\mu_{k}\lambda_{k}} ([\boldsymbol{w}_{k}]_{m} - [\boldsymbol{\psi}_{k,n+1}]_{m})^{2} \right).$$
(12)

We denote $[\boldsymbol{w}_{k,n+1}]_m$ by \hat{w} and the maximal value of $|[\boldsymbol{w}_{\ell}^{\star}]_m|$ for $\ell \in \mathcal{N}_k^-$ as $[\boldsymbol{w}_k^o]_m$. • Case 1: $|[\boldsymbol{w}_k]_m| < [\boldsymbol{w}_k^o]_m$. In this case, (12) becomes:

$$\hat{w} = \operatorname*{argmin}_{\substack{[\boldsymbol{w}_k]_m \\ |[\boldsymbol{w}_k]_m| < [\boldsymbol{w}_k^o]_m}} [\boldsymbol{w}_k^o]_m + \frac{1}{2\mu_k \lambda_k} ([\boldsymbol{w}_k]_m - [\boldsymbol{\psi}_{k,n+1}]_m)^2.$$
(13)

The solution is directly given by:

$$\hat{w} = \begin{cases} [\psi_{k,n+1}]_m, & \text{if } |[\psi_{k,n+1}]_m| < [w_k^o]_m \\ [w_k^o]_m, & \text{if } [\psi_{k,n+1}]_m \ge [w_k^o]_m \\ -[w_k^o]_m, & \text{if } [\psi_{k,n+1}]_m \le -[w_k^o]_m. \end{cases}$$
(14)

• Case 2: $|[\boldsymbol{w}_k]_m| \ge [\boldsymbol{w}_k^o]_m$. Equation (12) becomes:

$$\hat{w} = \underset{\substack{[\boldsymbol{w}_k]_m \\ |[\boldsymbol{w}_k]_m| \ge [\boldsymbol{w}_k^o]_m}}{\operatorname{sum}} \left(|[\boldsymbol{w}_k]_m| + \frac{1}{2\mu_k \lambda_k} ([\boldsymbol{w}_k]_m - [\boldsymbol{\psi}_{k,n+1}]_m)^2 \right)$$
(15)

Consider first:

$$\hat{w}^{o} = \underset{[\boldsymbol{w}_{k}]_{m}}{\operatorname{argmin}} \left(|[\boldsymbol{w}_{k}]_{m}| + \frac{1}{2\mu_{k}\lambda_{k}} ([\boldsymbol{w}_{k}]_{m} - [\boldsymbol{\psi}_{k,n+1}]_{m})^{2} \right)$$
(16)

the solution is given by the soft thresholding operator defined as:

$$\hat{w}^{o} = S_{\mu_{k}\lambda_{k}} \left(\left[\boldsymbol{\psi}_{k,n+1} \right]_{m} \right) =$$

$$\begin{cases} \left[\boldsymbol{\psi}_{k,n+1} \right]_{m} + \mu_{k}\lambda_{k}, \text{ if } \left[\boldsymbol{\psi}_{k,n+1} \right]_{m} < -\mu_{k}\lambda_{k} \\ \left[\boldsymbol{\psi}_{k,n+1} \right]_{m} - \mu_{k}\lambda_{k}, \text{ if } \left[\boldsymbol{\psi}_{k,n+1} \right]_{m} > \mu_{k}\lambda_{k} \\ 0 & \text{otherwise.} \end{cases}$$

$$(17)$$

If $[\boldsymbol{w}_k^o]_m = 0$, problem (15) becomes unconstrained and we have:

$$\hat{w} = \hat{w}^o \tag{18}$$

Otherwise, considering constraint $|[{m w}_k]_m|\geq [{m w}^o_k]_m>0$ with (17) leads to:

$$\hat{w} = \begin{cases} [\psi_{k,n+1}]_m + \mu_k \lambda_k, \text{ if } [\psi_{k,n+1}]_m \leq -[w_k^o]_m - \mu_k \lambda_k \\ -[w_k^o]_m, \text{ if } -[w_k^o]_m - \mu_k \lambda_k < [\psi_{k,n+1}]_m < 0 \\ -[w_k^o]_m \text{ or } [w_k^o]_m, \text{ if } [\psi_{k,n+1}]_m = 0 \\ [w_k^o]_m, \text{ if } 0 < [\psi_{k,n+1}]_m < [w_k^o]_m + \mu_k \lambda_k \\ [\psi_{k,n+1}]_m - \mu_k \lambda_k, \text{ if } [\psi_{k,n+1}]_m \geq [w_k^o]_m + \mu_k \lambda_k \end{cases}$$

(19)

To evaluate the proximal operator (12), several issues have to be addressed.

1. We first need to know which of (14), (17) or (19) has to be applied as the proximal operator of (12).

- Case A: $[\boldsymbol{w}_k^o]_m = 0$. Since condition $|[\boldsymbol{w}_k]_m| < [\boldsymbol{w}_k^o]_m$ of Case 1 cannot hold, we only consider Case 2. The proximal operator is given by (17) directly.
- Case B: $[\boldsymbol{w}_k^o]_m > 0$. Proximal operators (14) and (19) hold simultaneously. We shall choose the solution that minimizes the cost (12). We arrive at the following expression:

$$\hat{w} = (20)$$

$$\begin{cases}
[\psi_{k,n+1}]_{m} + \mu_{k}\lambda_{k}, \text{ if } [\psi_{k,n+1}]_{m} \leq -[w_{k}^{o}]_{m} - \mu_{k}\lambda_{k} \\
-[w_{k}^{o}]_{m}, \text{ if } -[w_{k}^{o}]_{m} - \mu_{k}\lambda_{k} < [\psi_{k,n+1}]_{m} \leq -[w_{k}^{o}]_{m} \\
[\psi_{k,n+1}]_{m}, \text{ if } [[\psi_{k,n+1}]_{m}] < [w_{k}^{o}]_{m} \\
[w_{k}^{o}]_{m}, \text{ if } [w_{k}^{o}]_{m} \leq [\psi_{k,n+1}]_{m} < [w_{k}^{o}]_{m} + \mu_{k}\lambda_{k} \\
[\psi_{k,n+1}]_{m} - \mu_{k}\lambda_{k}, \text{ if } [\psi_{k,n+1}]_{m} \geq [w_{k}^{o}]_{m} + \mu_{k}\lambda_{k}$$

2. Another issue is that \hat{w} cannot be evaluated with (17) and (20) since $[\boldsymbol{w}_k^o]_m$ is unknown. An approximation of $[\boldsymbol{w}_k^o]_m$ is given by $\max_{\ell \in \mathcal{N}_k^-} \{ |[\boldsymbol{\psi}_{\ell,n+1}]_m| \}.$

3. Condition $[\boldsymbol{w}_{k}^{o}]_{m} = 0$ has to be satisfied to trigger Case A, otherwise Case B is considered. Due to the existence of gradient noise, the condition $[\boldsymbol{w}_{k}^{o}]_{m} = 0$ of Case A is seldom satisfied. Thus we instead use conditions $[\boldsymbol{w}_{k}^{o}]_{m} \leq \tau$ to trigger Case A and $[\boldsymbol{w}_{k}^{o}]_{m} > \tau$ to select Case B.

- 2 Proximal Multitask Diffusion LMS
- **3** Proximal Operator Evaluation of $\ell_{\infty,1}$ Regularizer
- 4 Simulation Results

SIMULATION RESULTS

We considered a nonstationary jointly sparse system identification scenario with w_k^{\star} varying over time.

Figure 1: Simulation results with white inputs. Figure 2: Simulation results with colored inputs.

THANKS FOR YOUR TIMES!