

Faster and still safe: Combining screening techniques and structured dictionaries to accelerate the Lasso

Cássio F. DANTAS, cassio.fraga-dantas@inria.fr,

Rémi GRIBONVAL remi.gribonval@inria.fr

Accelerate the Lasso optimization by combining two strategies :

1) Safe Screening Rules

2) Fast Structured Dictionaries

Contents

- **01.** Context (Lasso problem)
- **02.** Fast Structured Dictionaries
- **03.** Screening Rules
- **04.** Screening Rules w/ Approx. Dictionaries
- **05.** Results
- **06.** Conclusion

Context

Lasso problem

The l1-regularized least squares.

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \underbrace{\frac{1}{2} \|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1}}_{P(\boldsymbol{\beta})}$$

Denoting :

- $\mathbf{y} \in \mathbb{R}^N$ the observation vector;
- $X = [\mathbf{x}_1, \dots, \mathbf{x}_K] \in \mathbb{R}^{N \times K}$ the design matrix (or dictionary);
- $\beta \in \mathbb{R}^{K}$ the sparse representation vector;
- $\lambda > 0$ parameter controlling the sparsity of the solution.

Dual Lasso

Dual formulation of the Lasso problem :

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Delta_{\mathbf{X}}}{\operatorname{argmax}} \quad \underbrace{\frac{1}{2} \|\mathbf{y}\|_{2}^{2} - \frac{\lambda^{2}}{2} \left\|\boldsymbol{\theta} - \frac{\mathbf{y}}{\lambda}\right\|_{2}^{2}}_{D(\boldsymbol{\theta})}$$

Denoting :

- $heta \in \mathbb{R}^N$ the dual variable;
- $\Delta_{\mathbf{X}} = \{ \boldsymbol{\theta} \in \mathbb{R}^N : \| \mathbf{X}^T \boldsymbol{\theta} \|_{\infty} \leq 1 \}$ the feasible set;

Motivation

- **Iterative algorithms** are often used to solve the Lasso problem.
- Exemple : ISTA (Iterative Shrinkage-Thresholding Algorithm)

while not converged do

$$\boldsymbol{\beta}_{t+1} \leftarrow \mathrm{ST}_{\frac{\lambda}{L_t}} \left(\boldsymbol{\beta}_t + \frac{1}{L_t} \mathbf{X}_t^T (\mathbf{y} - \mathbf{X}_t \boldsymbol{\beta}_t) \right)$$

• Two matrix-vector multiplications at each iteration.

Quadratic complexity!

Can it be reduced?

Fast Structured Dictionaries

Structure ⇒ Acceleration

Accelerate matrix-vector multiplications

W Constrain the dictionary matrix to have a certain type of structure.

Examples :

- Kronecker product
- Sparse factors
- Circulant factors
- (...)

Structured Approximation

If the dictionary matrix ${f X}$ is not structured, find a structured approximation ${f X}$.

 $\mathbf{\tilde{X}} = \mathbf{X} + \mathbf{E},$

where ${f E}$ is the approximation error matrix and ${f e}_j$ is its j-th column.

Algorithm (high level view)

1) Start Lasso optimization by using the structured $\tilde{\mathbf{X}}$, to take advantage of its reduced multiplication cost.

2) As the algorithm approaches the solution, switch back to the original dictionary ${f X}.$

while switching criterion not met do

$$\boldsymbol{\beta}_{t+1} \leftarrow \mathrm{ST}_{\frac{\lambda}{L_t}} \left(\boldsymbol{\beta}_t + \frac{1}{L_t} \mathbf{\tilde{X}}_t^T (\mathbf{y} - \mathbf{\tilde{X}}_t \boldsymbol{\beta}_t) \right)$$

while not converged do

$$\boldsymbol{\beta}_{t+1} \leftarrow \mathrm{ST}_{\frac{\lambda}{L_t}} \left(\boldsymbol{\beta}_t + \frac{1}{L_t} \mathbf{X}_t^T (\mathbf{y} - \mathbf{X}_t \boldsymbol{\beta}_t) \right)$$

Algorithm (high level view)

1) Start Lasso optimization by using the structured $\tilde{\mathbf{X}}$, to take advantage of its reduced multiplication cost.

while switching criterion not met do

$$\boldsymbol{\beta}_{t+1} \leftarrow \mathrm{ST}_{\frac{\lambda}{L_t}} \left(\boldsymbol{\beta}_t + \frac{1}{L_t} \mathbf{\tilde{X}}_t^T (\mathbf{y} - \mathbf{\tilde{X}}_t \boldsymbol{\beta}_t) \right)$$

2) As the algorithm approaches the solution, switch back to the original dictionary ${f X}$.

while not converged do

$$\boldsymbol{\beta}_{t+1} \leftarrow \mathrm{ST}_{\frac{\lambda}{L_t}} \left(\boldsymbol{\beta}_t + \frac{1}{L_t} \mathbf{X}_t^T (\mathbf{y} - \mathbf{X}_t \boldsymbol{\beta}_t) \right)$$

Safe Screening Rules

• Rules for identifying inactive dictionary atoms, before solving the problem.

• Rules for identifying inactive dictionary atoms, before solving the problem.

Dictionary columns that will receive zero weight on the reconstruction of the input signal

• Rules for identifying inactive dictionary atoms, before solving the problem.

Dictionary columns that will receive zero weight on the reconstruction of the input signal \approx

• Rules for identifying inactive dictionary atoms, before solving the problem.

• Rules for identifying inactive dictionary atoms, before solving the problem.

Dictionary columns that will receive zero weight on the reconstruction of the input signal

- We can eliminate such atoms.
- Zero risk of false eliminations!

Screening Test

- Function $\mu(\mathbf{x}_j)$ of the atom \mathbf{x}_j

$$\mu(\mathbf{x}_j) < 1 \quad \Longrightarrow \quad \mathbf{x}_j \;\;$$
 is surely inactive.

Screening Test

- Function $\mu(\mathbf{x}_j)$ of the atom \mathbf{x}_j

 $\mu(\mathbf{x}_j) < 1 \implies \mathbf{x}_j$ is surely inactive.

Rejection set:

$$\mathcal{A}^{c} = \{ j \in \{1, \dots, K\} : \mu(\mathbf{x}_{j}) < 1 \}$$

Preserved set:

$$\mathcal{A} = \{ j \in \{1, \dots, K\} : \mu(\mathbf{x}_j) \ge 1 \}$$

Screening Test – In practice

Given a region \mathcal{R} (**safe region**) which contains $\overline{\theta}$.

$$\mu_{\mathcal{R}}(\mathbf{x}_j) = \max_{\boldsymbol{\theta} \in \mathcal{R}} |\mathbf{x}_j^T \boldsymbol{\theta}|$$

Sphere test

Safe region is a closed I2-ball with center $m{c}$ and radius $r: \quad \mathcal{R} = B(m{c},r)$

$$\mu_{B(\mathbf{c},r)}(\mathbf{x}_j) = |\mathbf{x}_j^T \mathbf{c}| + r ||\mathbf{x}_j||_2.$$

 \mathcal{R}

Â.

Screening Rules with Approximate Dictionaries

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \frac{1}{2} \| \mathbf{X} \boldsymbol{\beta} - \mathbf{y} \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1}$$
$$\mathbf{X} \longrightarrow \begin{bmatrix} \mu(\mathbf{X}_{j}) \\ \forall j \end{bmatrix} \longrightarrow \text{Rejection s}$$

Rejection set $\mathcal{A}^{\rm c}$

Guarantee:
$$\mathrm{supp}(\boldsymbol{\hat{eta}}) \subset \mathcal{A}$$

Extending sphere tests

Suppose a safe sphere $B(\mathbf{c}, r)$ given.

Sphere test :
$$\mu_{B(\mathbf{c},r)}(\mathbf{x}_j) = |\mathbf{x}_j^T \mathbf{c}| + r \|\mathbf{x}_j\|_2.$$

A certain « *security margin* » must be added to account for the atom approximation error.

Extending sphere tests

Suppose a safe sphere $B(\mathbf{c}, r)$ given.

Sphere test :
$$\mu_{B(\mathbf{c},r)}(\mathbf{x}_j) = |\mathbf{x}_j^T \mathbf{c}| + r \|\mathbf{x}_j\|_2.$$

A certain *« security margin »* must be added to account for the atom approximation error.

Sphere test with approximate dictionary :

$$\tilde{\mu}_{B(\mathbf{c},r)}(\mathbf{\tilde{x}}_j) = |\mathbf{\tilde{x}}_j^T \mathbf{c}| + \|\mathbf{e}_j\|_2 \|\mathbf{c}\|_2 + r \|\mathbf{x}_j\|_2.$$

GAP safe sphere :

Given a primal-dual estimation $(oldsymbol{eta}_t,oldsymbol{ heta}_t)$ at iteration t .

$$\mathbf{c} = \boldsymbol{\theta}_t$$
 $r = \frac{1}{\lambda} \sqrt{2G(\boldsymbol{\beta}_t, \boldsymbol{\theta}_t)}$

with $G(m{eta}_t,m{ heta}_t)=P(m{eta}_t)-D(m{ heta}_t)$ the duality gap at iteration t .

GAP safe sphere :

Given a primal-dual estimation $(oldsymbol{eta}_t,oldsymbol{ heta}_t)$ at iteration t .

$$\mathbf{c} = \boldsymbol{\theta}_t$$
$$r = \frac{1}{\lambda} \sqrt{2G(\boldsymbol{\beta}_t, \boldsymbol{\theta}_t)}$$

with $G(m{eta}_t,m{ heta}_t)=P(m{eta}_t)-D(m{ heta}_t)$ the duality gap at iteration t .

GAP safe sphere :

Given a primal-dual estimation $(oldsymbol{eta}_t,oldsymbol{ heta}_t)$ at iteration t .

$$\mathbf{c} = \boldsymbol{\theta}_t \qquad \qquad t = 6$$
$$r = \frac{1}{\lambda} \sqrt{2G(\boldsymbol{\beta}_t, \boldsymbol{\theta}_t)} \qquad \qquad \qquad \mathbf{c}_r$$

with $G(m{eta}_t, m{ heta}_t) = P(m{eta}_t) - D(m{ heta}_t)$ the duality gap at iteration t .

GAP safe sphere :

Given a primal-dual estimation $(oldsymbol{eta}_t,oldsymbol{ heta}_t)$ at iteration t .

$$\mathbf{c} = \boldsymbol{\theta}_t \qquad \qquad t = 10$$
$$r = \frac{1}{\lambda} \sqrt{2G(\boldsymbol{\beta}_t, \boldsymbol{\theta}_t)} \qquad \qquad \qquad \mathbf{c}^r$$

with $G(m{eta}_t, m{ heta}_t) = P(m{eta}_t) - D(m{ heta}_t)$ the duality gap at iteration t .

GAP safe sphere:

Given a primal-dual estimation $(oldsymbol{eta}_t,oldsymbol{ heta}_t)$ at iteration t .

$$\begin{aligned} \mathbf{c} &= \boldsymbol{\theta}_t \\ r &= \frac{1}{\lambda} \sqrt{2G(\boldsymbol{\beta}_t, \boldsymbol{\theta}_t)} \end{aligned}$$

GAP safe sphere with approximate dictionary:

$$\begin{split} G(\boldsymbol{\beta}_t,\boldsymbol{\theta}_t) \text{ cannot be calculated, since } P(\boldsymbol{\beta}_t) &= \frac{1}{2} \|\mathbf{X}\boldsymbol{\beta}_t - \mathbf{y}\|_2^2 + \lambda \|\boldsymbol{\beta}_t\|_1 \text{ depends on } \mathbf{X} \text{ .} \\ \text{Instead, we use a modified primal} \quad \tilde{P}(\boldsymbol{\beta}_t) &= \frac{1}{2} \|\tilde{\mathbf{X}}\boldsymbol{\beta}_t - \mathbf{y}\|_2^2 + \lambda \|\boldsymbol{\beta}_t\|_1 \\ \tilde{\mathbf{c}} &= \tilde{\boldsymbol{\theta}}_t \\ \tilde{r} &= \frac{1}{\lambda} \sqrt{2\tilde{G}(\boldsymbol{\beta}_t, \tilde{\boldsymbol{\theta}}_t) + 2\delta'} \\ \text{with } \delta' &= \|\tilde{\boldsymbol{\rho}}_t\|_2 \|\mathbf{E}\| \|\boldsymbol{\beta}_t\|_2 + \frac{1}{2} \|\mathbf{E}\|^2 \|\boldsymbol{\beta}_t\|_2^2 \end{split}$$

Extended dynamic screening

We now have safe screening rules that manipulate an approximate dictionary.

But, what's the impact of the numerous security margins? Is it still worth it?

Results

Results

2500 x 10000 dictionary

Running times per iteration

- Less inactive atoms are identified by the extended screening.
- BUT, structured dictionary makes the initial iterations much faster.

•

•

Running times per iteration

- Less inactive atoms are identified by the extended screening.
- BUT, structured dictionary makes the initial iterations much faster.

1.0

0.8

•

•

Running times per iteration

Conclusion

Conclusion

- The proposed approach combines screening rules and fast approximate dictionaries.
- It reduces even further the execution time w.r.t screening rules alone.

Potential extensions

- Other region types (e.g. domes)
- Other problems than Lasso (e.g. Group-Lasso, Regularized Logistic Regression)

Thank you!

Questions?

Contact me: cassio.fraga-dantas@inria.fr

Screening test – Details

Dual formulation of the Lasso problem :

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \quad \frac{1}{2} \|\mathbf{y}\|_{2}^{2} - \frac{\lambda^{2}}{2} \left\|\boldsymbol{\theta} - \frac{\mathbf{y}}{\lambda}\right\|_{2}^{2}$$

s.t.
$$\|\mathbf{X}^{T}\boldsymbol{\theta}\|_{\infty} \leq 1.$$

Projection problem !

At the dual solution $\hat{oldsymbol{ heta}}$:

 \succ Constraints on \mathbf{X}_1 and \mathbf{X}_2 are active, i.e.

$$|\mathbf{x}_1^T \hat{\boldsymbol{\theta}}| = 1, \quad |\mathbf{x}_2^T \hat{\boldsymbol{\theta}}| = 1$$

 \succ Constraints on \mathbf{x}_3 is inactive, i.e.

 $|\mathbf{x}_3^T \hat{\boldsymbol{\theta}}| < 1$

Screening test – Details

- Every dictionary atom for which $|\mathbf{x}_j^T \hat{\boldsymbol{\theta}}| < 1$ is *inactive*.
- Then, simply calculate $|\mathbf{x}_j^T \hat{\boldsymbol{\theta}}|$ for all j and discard all atoms for which the result is smaller than 1.

```
oldsymbol{\hat{	heta}} Dual solution \hat{oldsymbol{	heta}} is not known.
```

) Identify a region $~{\cal R}~$ (**safe region**) which contains $\hat{oldsymbol{ heta}}$.

Sufficient condition :
$$\forall \quad \boldsymbol{\theta} \in \mathcal{R}, \quad |\mathbf{x}_j^T \boldsymbol{\theta}| < 1 \implies \mathbf{x}_j$$
 is inactive

 \checkmark

Swithing criterion

Reasons to switch back from $\mathbf{\tilde{X}}$ to \mathbf{X} :

- Convergence: to avoid converging to the solution of the approximate problem.
 - The higher the approximation error, the sooner we need to switch.

- Screening ratio: the number of active atoms may become so small that the use of $\tilde{\mathbf{X}}$ does not pay off anymore.

Comparison

Less inactive atoms are identified by the extended screening.

Swithing criterion

Complexity reduction

Complexity reduction

Impact of the Approximation Error

