Scheduling of Multistatic Sonobuoy Fields using Multi-Objective Optimization

Christopher Gilliam1, Daniel Angley2, Sofia Suvorova2, Branko Ristic1, Bill Moran2, Fiona Fletcher3, Han Gaetjens3, Sergey Simakov3

1 School of Engineering, RMIT University, Australia
2 Electrical & Electronic Engineering, The University of Melbourne, Australia
3 Maritime Division, Defence Science and Technology Group, Australia

17th April 2018
Outline

1. Multistatic Sonobuoy Fields
 - Two Tasks \implies Search for and track underwater targets
 - Performance dependent on scheduling sonobuoys

2. Recap on Tracking in Sonobuoy Fields
 - Geometric Modelling and Measurements
 - Tracking algorithm used to track targets

3. Multi-Objective Scheduling Framework
 - Optimization Problem \implies Two reward functions
 - Tracking Reward Function
 - Search Reward Function

4. Simulation Results

5. Conclusions
A network of transmitters and sensors distributed across a large search region
Two tasks of the system:

- Detect targets that are unknown to the system
Two tasks of the system:
- Detect targets that are unknown to the system
Two tasks of the system:

- Detect targets that are unknown to the system
- Accurately track targets known to the system
Multistatic Sonobuoy Fields

Two tasks of the system:

- Detect targets that are unknown to the system
- Accurately track targets known to the system
Scheduling Problem

- Choose sequence of transmitters and waveforms to satisfy tasks
Choose sequence of transmitters and waveforms to satisfy tasks

At one transmission time:

Choose a Transmitter: \(T = \{j_1, j_2, \ldots, j_{N_T}\} \)

where \(N_T \) is the number of transmitters in the field

Choose a Waveform: \(W = \{w_1, w_2, \ldots, w_{N_d}\} \)

where \(N_d \) is the number of possible waveforms
Choose sequence of transmitters and waveforms to satisfy tasks

At one transmission time:

Choose a Transmitter: \(\mathcal{T} = \{j_1, j_2, \ldots, j_{N_T}\} \)

where \(N_T \) is the number of transmitters in the field

Choose a Waveform: \(\mathcal{W} = \{w_1, w_2, \ldots, w_{N_d}\} \)

where \(N_d \) is the number of possible waveforms

Possible waveforms:

- Continuous Wave (CW) or Frequency Modulated (FM) waveform
- 1kHz or 2kHz frequency
- 2 second or 8 second duration
Scheduling Problem

Choose sequence of transmitters and waveforms to satisfy tasks

At one transmission time:

Choose a Transmitter: \(\mathcal{T} = \{j_1, j_2, \ldots, j_{N_T}\} \)

where \(N_T \) is the number of transmitters in the field

Choose a Waveform: \(\mathcal{W} = \{w_1, w_2, \ldots, w_{N_d}\} \)

where \(N_d \) is the number of possible waveforms

Action space:

Choose an action: \(a \in \mathcal{A}, \quad \mathcal{A} = \mathcal{T} \times \mathcal{W} \)
Conflicting Objectives

Track vs Search \rightarrow Which transmitter to choose...
Conflicting Objectives

Our Approach:

Combine both tasks in multi-objective framework and use multi-objective optimization to decide scheduling.
Sonobuoy Field Description:

- Transmitter positions
 \[\mathbf{s}_j = \begin{bmatrix} x_j^s, y_j^s \end{bmatrix}^T \]

- Receiver positions
 \[\mathbf{r}_i = \begin{bmatrix} x_i^r, y_i^r \end{bmatrix}^T \]

- Assume positions are known at all times*

‘x’ = Transmitters, ‘o’ = Receivers

*Each buoy contains RF communications and may contain GPS equipment
Target Description:

- Target Position at time t_k:
 \[p = [x_k, y_k]^T \]

- Target Velocity at time t_k:
 \[v = [\dot{x}_k, \dot{y}_k]^T \]

- Time-varying state
 \[x_k = [p_k^T, v_k^T]^T \]

‘x’ = Transmitters, ‘o’ = Receivers
Target Motion:

- Noisy linear constant-velocity model

\[\mathbf{x}_k = \left(\begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \otimes \mathbf{I}_2 \right) \mathbf{x}_{k-1} + \mathbf{e}_k \]

- Process noise \(\mathbf{e}_k \) is Gaussian with variance

\[\mathbf{Q} = \omega \begin{bmatrix} T^3/3 & T^2/2 \\ T^2/2 & T \end{bmatrix} \otimes \mathbf{I}_2 \]

where \(T = t_k - t_{k-1} \) is the sampling in time

\(\otimes \) is the Kronecker product and \(\mathbf{I}_2 \) is \(2 \times 2 \) identity matrix
Modelling, Measurements & Tracking Algorithm

Measurements:

- Signal amplitude β and Kinematic measurement z
 \[z = h_j^i(x_k) + w_j^i \]

- Measurements collected from a subset of receivers

- Buoys have two waveform modalities
 - Frequency Modulated (FM)
 - Continuous Wave (CW)

'x' = Transmitters, 'o' = Receivers
Using FM waveforms:

- Bistatic Range:
 \[|p_k - r_i| + |p_k - s_j| \]

- Angle from Receiver:
 \[\arctan \left(\frac{y_k - y_{r_i}}{x_k - x_{r_i}} \right) \]

- Good positional information

'x' = Transmitters, 'o' = Receivers
Using CW waveforms:

- **Bistatic Range:**
 \[|\mathbf{p}_k - \mathbf{r}_i| + |\mathbf{p}_k - \mathbf{s}_j| \]

- **Angle from Receiver:**
 \[\text{arctan} \left(\frac{y_k - y_{r_i}}{x_k - x_{r_i}} \right) \]

- **Bistatic Range-Rate:**
 \[\mathbf{v}^T \left[\frac{\mathbf{p}_k - \mathbf{r}_i}{|\mathbf{p}_k - \mathbf{r}_i|} + \frac{\mathbf{p}_k - \mathbf{s}_i}{|\mathbf{p}_k - \mathbf{s}_i|} \right] \]

- **Good velocity information**

‘x’ = Transmitters, ‘o’ = Receivers
Tracking Challenges:

- High levels of clutter
- Non-linear measurements
- Low probability of detection

'x' = Transmitters, 'o' = Receivers

Many possible algorithms: ML-PDA, MHT, PMHT, JIPDA, PHD/CPHD, ... etc
Modelling, Measurements & Tracking Algorithm

The tracker:

- Multi-Sensor Bernoulli filter\(^1\)
 (optimal multi-sensor Bayesian filter for a single target)

- Linear Multi-Target (LMT) Paradigm\(^2\)

- Gaussian mixture model implementation\(^3\)

- Process FM & CW measurements

`x` = Transmitters, `o` = Receivers

Cite:

Multi-Objective Framework for choosing

Maximising rewards:

- \(R_{\text{Search}}(a) \Rightarrow \) Reward for searching to detect unknown targets
- \(R_{\text{Track}}(a) \Rightarrow \) Reward for continued tracking of known targets
Multi-Objective Framework for choosing

Maximising rewards:

- $R_{\text{Search}}(a) \Rightarrow$ Reward for searching to detect unknown targets
- $R_{\text{Track}}(a) \Rightarrow$ Reward for continued tracking of known targets

Combine rewards via convex sum:

$$\max_a \left\{ \alpha R_{\text{Track}}(a) + (1 - \alpha) R_{\text{Search}}(a) \right\}$$

where $\alpha \in [0, 1]$
Multi-Objective Framework for choosing

Maximising rewards:
- $R_{\text{Search}}(a) \Rightarrow$ Reward for searching to detect unknown targets
- $R_{\text{Track}}(a) \Rightarrow$ Reward for continued tracking of known targets

Combine rewards via convex sum:

$$\max_a \{ \alpha R_{\text{Track}}(a) + (1 - \alpha) R_{\text{Search}}(a) \}$$

where $\alpha \in [0, 1]$

Performance depends on $\alpha \Rightarrow$ Controls trade-off
\Rightarrow Different solutions depending on the value of α
Multi-Objective Framework for choosing

Maximising rewards:

- $R_{\text{Search}}(a) \Rightarrow$ Reward for searching to detect unknown targets
- $R_{\text{Track}}(a) \Rightarrow$ Reward for continued tracking of known targets

Combine rewards via convex sum:

$$\max_a \{ \alpha R_{\text{Track}}(a) + (1 - \alpha) R_{\text{Search}}(a) \}$$

where $\alpha \in [0, 1]$

Pareto Optimality:

A point is Pareto optimal if there is no other point that can improve one objective without degrading the other.

Problem characterised \Rightarrow Set of Pareto optimal points

\Rightarrow Pareto Frontier
Given previous tracking:

† Measure the gain in tracking information from action \(a \)
Tracking Reward

Approximate information matrix:

Single track:
\[
\text{trace} \left[J_{\text{Predict}} + \sum_{i \in \mathcal{R}} P^i_d(a) J_{\text{Measure}}^i(a) \right]
\]

Trace of only the positional elements of information matrix

\(P^i_d(a) \) Expected probability of detecting track
Tracking Reward

Predicted Information Matrix:

\[
J_{\text{Predict}} = \left[F_{k-1} P_{k-1} [F_{k-1}]^T \right]^{-1}
\]

Propagation of error covariance due to motion model

where \(F_{k-1} \) is the Jacobian of \(f(x_{k-1}) \) and \(P_{k-1} \) is the error covariance from tracker.
Tracking Reward

Measurement Information Matrix:

\[
J_{\text{Measure}} = \left[H_k^i(a)\right]^T \left[R_k^i(a)\right]^{-1} H_k^i(a)
\]

Gain in information from action

where \(H_k^i(a)\) is the Jacobian of \(h_a(x_{k-1})\) and \(R_k^i(a)\) is the measurement covariance
Multiple tracks:

$$R_{\text{Track}}(a) = \sum_{\tau=1}^{T} \omega_\tau \text{trace} \left[J_{\text{Predict}}^\tau + \sum_{i \in \mathcal{R}} P_{d,i,\tau}^i(a) J_{\text{Measure}}^{i,\tau}(a) \right]$$

$$\omega_\tau \Rightarrow \text{Normalised weights (} \propto 1/\text{existence probability})$$
Search Reward

Reduction of the probability of undetected targets in sonar field
Reduction of the probability of undetected targets in sonar field

Modelling this probability1:

- Define Threat Map $P_{T,k} \Rightarrow$ Discrete 2D grid of probabilities
- Probabilities evolve over time
 - Increases \Rightarrow Drift & diffusion of undetected targets
 - Decreases \Rightarrow Transmitters emits a ping

Search Reward

Reduction of the probability of undetected targets in sonar field

Drift & diffusion process:

- Matrix $G \Rightarrow$ Probability of targets entering from adjacent cells
- Update to Threat Map \Rightarrow Filter $P_{T,k}$ with G
- Pre-calculate G using Monte-Carlo simulations

E.g. for a 60 s interval, grid size of 1 km, uniformly distributed target speed between 0 and 10 knots

$$G = \begin{bmatrix} 0.0036 & 0.0582 & 0.0036 \\ 0.0582 & 0.7526 & 0.0582 \\ 0.0036 & 0.0582 & 0.0036 \end{bmatrix}$$
Search Reward

Reduction of the probability of undetected targets in sonar field

Transmitting a ping:

Apply Bayesian update at each cell of $P_{T,k}$

$$P_{T,k}(x, a) = \frac{(1 - P_d(x, a))P_{T,k-1}(x)}{(1 - P_d(x, a))P_{T,k-1}(x) + (1 - P_{fa})(1 - P_{T,k-1}(x))}$$

- $P_d(x, a)$ is the probability a target is detected after action a
- P_{fa} is the false alarm probability
- $x = (x, y)$ is the 2D grid point
Search Reward

Reduction of the probability of undetected targets in sonar field

Obtaining $P_d(x, a)$:

Generate probabilities using Monte-Carlo simulations and the realistic simulator (BRISE)

e.g.

- 160 × 160 km area
- 1km × 1km grid resolution
- 5 × 5 transmitter grid
- 6 × 6 receiver grid
- Buoy separation = 15km
- FM, 1 kHz waveform with 2 s duration.
Search Reward

Reduction of the probability of undetected targets in sonar field
and finally...

\[R_{\text{search}}(a) = \sum_x P_{T,k-1}(x) - P_{T,k}(x, a) \]
Set-up:
- 4 × 4 transmitter grid
- 5 × 5 receiver grid
- Buoy separation = 15km
- 50 Minute Scenario
- 1 transmission/minute
- Blue target present for whole duration
- Green target appears after 10 minutes

‘x’ = Transmitters, ‘o’ = Receivers

Realistic measurements \Rightarrow Bistatic Range Independent Signal Excess (BRISE) simulation environment
Analysis of Scheduler - Set Up

Set-up:
- 4 x 4 transmitter grid
- 5 x 5 receiver grid
- Buoy separation = 15 km
- 50 Minute Scenario
- 1 transmission/minute
- Blue target present for whole duration
- Green target appears after 10 minutes

'x' = Transmitters, 'o' = Receivers

Analyse the performance of the scheduler as α varies
α = 0.35
Analysis of Scheduler - Demo

\[\alpha = 0.35 \]
Analysis of Scheduler - Results

Error bars = 95% confidence intervals for the estimated values
Red dashed line = Performance from random scheduling

Values averaged over 300 Monte-Carlo simulations and every transmission
Analysis of Scheduler - Results

Pareto-esque Frontier:

Values averaged over 300 Monte-Carlo simulations and every transmission
Analysis of Scheduler - Transmitter Choice

2D histogram showing the proportion of waveforms transmitted
Analysis of Scheduler - Transmitter Choice

2D histogram showing the proportion of waveforms transmitted

\(\alpha = 0 \)
Conclusions

- Introduced scheduling of multistatic sonobuoy fields
 - Search \implies Detect targets that are unknown
 - Track \implies Accurately track known targets

- Presented multi-objective framework for scheduling
 - Each task is treated as a separate objective
 - Objectives combined via weighted sum
 - Weight α controls priority placed on each objective

- Analysed proposed scheduling via realistic simulations
 - Demonstrated trade-off between search and track as α varies
 - Trade-off characterised in terms of points on the Pareto front
Thank you for listening