

Objectives and Contributions

This paper proposes a sparse recovery assisted direction-of-arrival (SR-DOA) estimator.

 \cdot The DOA estimation is formulated as a sparse nonnegative least squares problem.

• The SR-DOA method is able to suppress the noise but at the expense of a few degrees-offreedom, and mitigate the sampling errors by exploiting its asymptotic distribution.

The spare Bayesian learning with nonnegative Laplace prior is utilized to yield the DOA estimation.

• Numerical results show that the proposed SR-DOA algorithm outperforms the essiting methods in terms of the estimation accuracy.

Problem formulation

Consider K uncorrelated narrowband far-field signals, $s_k(t), k = 1, 2, \cdots, K$, impinging on a linear sparse array which consists of M omnidirectional sensors located at $[0, d_1, \dots, d_{M-1}]$, where d_m represents the distance between the (m + 1)-th sensor and the first sensor. Then, the array output vector $\mathbf{x}(t)$ of T snapshots can be expressed as

$$\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t) + \mathbf{n}(t), \ t = 1, 2, \cdots, T$$
 (1)

where $\boldsymbol{s}(t) = [s_1(t)], s_2(t), \cdots, s_K(t)]^T$ and $\boldsymbol{n}(t)$ denote the source signal and additive Gaussian noise, respectively, \boldsymbol{A} consists of K steering vectors. Note that the DOA of the k-th source signal is distributed in the range of $(-90^\circ, 90)$. Thus, by invoking all the possible DOAs, $\mathbf{x}(t)$ in (1) can be written in a high-resolution and sparse representation as

$$\mathbf{x}(t) = \bar{\mathbf{A}}\bar{\boldsymbol{s}}(t) + \boldsymbol{n}(t), \ t = 1, 2, \cdots, T \qquad (2)$$

where $\boldsymbol{A} = [\boldsymbol{a}(\bar{\theta}_1), \boldsymbol{a}(\bar{\theta}_2), \cdots, \boldsymbol{a}(\bar{\theta}_{\bar{K}})]$ and the set of $\boldsymbol{\theta} = \{\theta_1, \theta_2, \dots, \theta_{\bar{K}}\}$ gives a sampling grid of all possible DOAs, while $\bar{\boldsymbol{s}}(t) = [\bar{s}_1(t)], \bar{s}_2(t), \cdots, \bar{s}_K(t)]^T$ with $\bar{s}_k(t)$ being the possible source signal. In general, we have $K \gg K$. Therefore, $\bar{\boldsymbol{s}}(t)$ is a sparse vector, whose *i*-th row is nonzero and equals to the corresponding row of $\boldsymbol{s}(t)$ in (1). Consequently, the problem of DOA estimation based on (1) is equivalent to identifying the positions of the nonzero rows of $\mathbf{x}(t)$ in (2).

Min Huang and Lei Huang

College of Information Engineering, Shenzhen University

sparse nonnegative least squares (S-NNLS) modeling

To begin with, the sample covariance matrix of $\mathbf{x}(t)$	Fo
of (2) can be derived as	fu
$\hat{\boldsymbol{R}} = \bar{\boldsymbol{A}}\boldsymbol{R}_s\bar{\boldsymbol{A}}^H + \boldsymbol{R}_n + \boldsymbol{E} $ (3)	

where $\mathbf{R}_s = \mathbb{E}[\mathbf{\bar{s}}(t)\mathbf{\bar{s}}(t)^H] = \text{diag}\{\sigma_1^2, \cdots, \sigma_{\bar{K}}^2\}$ with In addition, the prior for $\boldsymbol{\varsigma}$ can be considered as a $\sigma_k^2 = \mathbb{E}[\bar{s}_k(t)\bar{s}_k(t)^H]$ being the power received from nonnegative Laplace distribution, which is the k-th source singal, $\mathbf{R}_n = \text{diag}\{\sigma^2, \cdots, \sigma^2\}$ with σ^2 being the variance of noise, while **E** reflects the error between the covariance matrix of $\mathbf{x}(t)$ given in where $p(\boldsymbol{\varsigma}\boldsymbol{\gamma}) = \prod_{k=1}^{K} \mathcal{N}_{+}(\boldsymbol{\varsigma}_{k}|0,\boldsymbol{\gamma}_{k})$ with $\mathcal{N}_{+}(\boldsymbol{\varsigma}_{k}|0,\boldsymbol{\gamma}_{k}) =$ (2), which is $\bar{\mathbf{A}} \mathbf{R}_s \bar{\mathbf{A}}^H + \mathbf{R}_n$, and its sample covariance matrix $\hat{\boldsymbol{R}}$ of (3). Let us vectorize (3), yielding $2\mathcal{N}(\boldsymbol{\varsigma}_k|0,\boldsymbol{\gamma}_k)$, while $p(\boldsymbol{\gamma}|\lambda) = \prod_{k=1}^{\bar{K}} p(\boldsymbol{\gamma}_k|\lambda)$ with an M^2 -length vector, which is $p(\boldsymbol{\gamma}_k|\lambda) = \frac{\lambda}{2}e^{-\frac{\lambda\gamma}{2}}$, the hyperprior of λ in (9) is assumed to follow Gamma distribution, i.e.,

$$\boldsymbol{y} \stackrel{\Delta}{=} \operatorname{vec}\{\hat{\boldsymbol{R}}\} = \boldsymbol{V}\boldsymbol{\varsigma} + \boldsymbol{\rho} + \boldsymbol{\xi}$$
(4)

where $\boldsymbol{V} \stackrel{\Delta}{=} \bar{\boldsymbol{A}}^* \odot \bar{\boldsymbol{A}}, \, \boldsymbol{\varsigma} \stackrel{\Delta}{=} [\sigma_1^2, \cdots, \sigma_{\bar{K}}^2]^T, \, \boldsymbol{\rho} \stackrel{\Delta}{=} \operatorname{vec}(\boldsymbol{R}_n) =$ $[\sigma^2 \boldsymbol{e}_1^T, \cdots, \sigma^2 \boldsymbol{e}_M^T]^T$ and $\boldsymbol{\xi} \stackrel{\Delta}{=} \operatorname{vec}(\boldsymbol{E})$. Here, $(\cdot)^*$, \odot and \boldsymbol{e}_i denote, respectively, the complex conjugate, Khatri-Rao product, and the *i*-th column of the identity matrix I_Q . Based on (4), our DOA estimation problem is converted to a problem of identifying the locations of nonzero elements in $\boldsymbol{\varsigma}$.

Then, we convert (4) into its real form, which can be expressed as

$$\hat{\boldsymbol{y}} = \hat{\boldsymbol{V}}\boldsymbol{\varsigma} + \hat{\boldsymbol{\rho}} + \hat{\boldsymbol{\xi}}$$
(5)

 $[\Re\{oldsymbol{y}\}^T,\Im\{oldsymbol{y}\}^T]^T, \quad \hat{oldsymbol{V}}$ where \hat{y} = $[\Re\{V\}^T,\Im\{V\}^T]^T, \quad \hat{\boldsymbol{
ho}}$ $[\boldsymbol{\rho}^T, \mathbf{0}^T]^T$ = and = $[\Re{\{\xi\}}^T, \Im{\{\xi\}}^T]^T$. Here, **0** is an $M^2 \times 1$ zero vector.

Subsequently, the cancellation of the noise resultant components in (5) can be implemented by premultiplying a selection matrix J satisfying $J\hat{\rho} = 0$ on $\hat{\boldsymbol{y}}$, yielding

$$\boldsymbol{u} \stackrel{\Delta}{=} \boldsymbol{J}\hat{\boldsymbol{y}} = \boldsymbol{J}\hat{\boldsymbol{V}}\boldsymbol{\varsigma} + \boldsymbol{J}\hat{\boldsymbol{\xi}}.$$
 (6)

Note that, according to the structure of e_i , J is constructed from the identity matrix I_{2M^2} by removing its $\{0 \times M + 1, 1 \times M + 2, \cdots, (M-1) \times M + M\}$ rows.

Finally, we may whiten $J\hat{\xi}$ through multiplying \boldsymbol{u} of (6) by $\boldsymbol{G}^{-\frac{1}{2}}$, yielding an S-NNLS model, i.e.,

$$\hat{\boldsymbol{u}} \stackrel{\Delta}{=} \boldsymbol{G}^{-\frac{1}{2}} \boldsymbol{u} = \boldsymbol{\Psi} \boldsymbol{\varsigma} + \boldsymbol{\nu}$$
(7)

where $\Psi \stackrel{\Delta}{=} G^{-\frac{1}{2}} J \hat{V}$ and $\boldsymbol{\nu} \sim \mathcal{N}(0, \boldsymbol{I}_{2M^2 - M})$ is now a white Gaussian noise vector.

From (13) and (14), it is easy to see that $\hat{\gamma}$ and λ are the functions of $\{\hat{\boldsymbol{\varsigma}}, \lambda\}$ and $\boldsymbol{\gamma}$, respectively. Recalling that $\hat{\boldsymbol{\varsigma}}$ is a function of $\boldsymbol{\gamma}, \hat{\boldsymbol{\varsigma}}$ can be determined in an iterative way.

where w_k is the second-order moment of $\boldsymbol{\varsigma}_k$. Similarly, when γ is given, λ can be computed by

The γ and its associated hyperparameter λ can be estimated by maximizing their posterior density, namely

Sparse Bayesian learning with nonnegative Laplace prior

for the model (7), we have the Gaussian likelihood inction as

$$p(\hat{\boldsymbol{u}}|\boldsymbol{\varsigma}) \sim \mathcal{N}(\boldsymbol{\Psi}\boldsymbol{\varsigma}, \boldsymbol{I}_{2M^2-M}).$$
 (8)

$$p(\boldsymbol{\varsigma}|\boldsymbol{\lambda}) = \int p(\boldsymbol{\varsigma}|\boldsymbol{\gamma}) p(\boldsymbol{\gamma}|\boldsymbol{\lambda}) d\boldsymbol{\gamma} = \sqrt{\boldsymbol{\lambda}}^{\bar{K}} e^{-\sqrt{\boldsymbol{\lambda}}\sum_{k=1}^{K} \boldsymbol{\varsigma}_{k}} \quad (9)$$

$$p(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}$$
(10)

Based on the Bayes rule, we can estimate $\boldsymbol{\varsigma}$ by maximizing its posterior density, namely,

> $\hat{\boldsymbol{\varsigma}} \propto rg\max_{\boldsymbol{\varsigma}} \mathcal{N}_+(\boldsymbol{\varsigma}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \boldsymbol{\mu}$ (11)

where $\boldsymbol{\mu} = \boldsymbol{\Sigma} \boldsymbol{\Psi}^T \hat{\boldsymbol{u}}$ and $\boldsymbol{\Sigma} = (\boldsymbol{\Psi}^T \boldsymbol{\Psi} + \boldsymbol{\Lambda}^{-1})^{-1}$ with $\Lambda = \text{diag}\{\gamma\}$. From (11), we readily find that $\hat{\varsigma}$ is a function of γ . Hence, once γ is estimated, the Maximum-A-Posteriori (MAP) estimate of $\hat{\boldsymbol{\varsigma}}$ can be determined by (11).

$$\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\lambda}} = \arg \max_{\boldsymbol{\gamma}, \boldsymbol{\lambda}} \mathbb{E}[\log p(\boldsymbol{\varsigma}, \boldsymbol{\gamma}, \boldsymbol{\lambda} | \hat{\boldsymbol{u}})] \\ \propto \arg \max_{\boldsymbol{\gamma}, \boldsymbol{\lambda}} \mathbb{E}[\log p(\boldsymbol{\varsigma}, \boldsymbol{\gamma}, \boldsymbol{\lambda}, \hat{\boldsymbol{u}})]$$
(12)
$$\propto \arg \max \mathbb{E}[p(\hat{\boldsymbol{u}} | \boldsymbol{\varsigma}) p(\boldsymbol{\varsigma} | \boldsymbol{\gamma}) p(\boldsymbol{\gamma} | \boldsymbol{\lambda}) p(\boldsymbol{\lambda})].$$

Hence, when λ is given, $\hat{\gamma}$ can be computed by

$$\hat{\boldsymbol{\gamma}}_k = -\frac{1}{2\lambda} + \sqrt{\frac{1}{4\lambda^2} + \frac{w_k}{\lambda}} \tag{13}$$

$$\hat{\lambda} = \frac{\bar{K} - 1 + c}{\sum_{k=1}^{\bar{K}} \gamma_k / 2 + c}.$$
(14)

unchanged.

Simulation results

Figure 1: RMSE versus SNR performance for different DOA estimators at T=200.

Figure 2: MSE versus number of snapshots for different DOA estimators at SNR = -18 dB.

• From Fig. 1, We can explicitly observe that our proposed SR-DOA method outperforms the other estimators when the SNR is less than -12.5 dB.

 \cdot In addition, when the SNR is larger than -12.5 dB, the estimation performance of our proposed SR-DOA algorithm is slightly worse than that of the NNSBL algorithm.

• From Fig. 2, as the number of snapshots increases, the RMSE performance of our proposed SR-DOA and NNSBL algorithms improves, while the performance of the conventional SBL algorithm is almost

• Furthermore, from Fig. 2, we can find that the RMSE of the proposed SR-DOA algorithm is relatively low, as long as the number of snapshots is not less than 150.

Contact Information

• Email: mhuang@szu.edu.cn; lhuang@szu.edu.cn

> PLACEHOLDER PLACEHOLDER