

Problem Statement

- Most source identification algorithms are based on stationarity of data.
- Consider a non-stationary data stream in which data statistics may change abruptly from sample to sample.
- Identify sources (the models and parameters) from multiple observations.

Data Generation Model

- A single stream (block) of length T, x_1^T , has been generated by multiple sources.
- Neither the sources nor the switching times are known.
- Let y_1^T be the (unknown) indexes of the sources that generated the sequence x_1^T
- Probability of x_t (sample at time t) depends on
 - the past samples x_1^{t-1}
 - the source that generated it, y_t ,

$$P(x_1^T | y_1^T, \Delta) = \prod_{t=1}^T P_{y_t}(x_t | x_1^{t-1})$$

 Δ is the set of mixture parameters.

Switching between Sources

- At time t, y_t , the index of the active source, depends on the previous ones, y_1^{t-1} .
- For simplicity, independent from x_1^{t-1} .
- Assume it is governed by a hidden Markov(1) source

$$P(y_1^T | \boldsymbol{\Delta}) = w_{y_1} \prod_{t=2}^T P_h(y_t | y_{t-1})$$

 W_k : the initial probability of source k $P_h(k|l)$: the probability of switching from source l to k

$$P(x_1^T | \boldsymbol{\Delta}) = \sum_{y_1^T} P(x_1^T | y_1^T, \boldsymbol{\Delta}) P(y_1^T | \boldsymbol{\Delta})$$

MIXTURE SOURCE IDENTIFICATION IN NON-STATIONARY DATA STREAMS WITH **APPLICATIONS IN COMPRESSION**

Afshin Abdi and Faramarz Fekri

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA {abdi,fekri}@ece.gatech.edu

Tree Source ModelingEach source,
$$S_i$$
, can be described by1. A set \mathcal{M}_i consisting of all sequences, contexts, such thatNo sequence in \mathcal{M}_i is a suffix of another oneFor any arbitrary sequences $x_{-\infty}^{-1}$ there is a unique context $c \in \mathcal{M}_i$ such that c is a suffix of $x_{-\infty}^{-1}$ and $P(X_0 = a | X_{-\infty}^{-1} = x_{-\infty}^{-1}) = P(X_0 = a | X_{-(c)}^{-1} = c) =: \theta(c, a)$ 2. Conditional probability distributions on contexts $\Theta_i = \{\theta(c, a) : a \in \mathcal{A}, c \in \mathcal{M}_i\}$ Set \mathcal{M}_i can be represented as a tree.For example: $\mathcal{M} = \{00, 10, 1\}$ P(011000) = P(01) P(1|1)P(0|1) P(0|10) P(0|00) $e = 00$ e^{-0} e^{-0}

$$\mathcal{M}$$

Theorem [Talata and Duncan, 2011]

For a stationary ergodic source, S, with context tree \mathcal{M}_S , for any constant D, $\widehat{\mathcal{M}}_{BIC}(\mathbf{x})|_D \to \mathcal{M}_S|_D$ almost surely as length of observed signal increases. Also, the maximum likelihood estimates $\hat{\theta}(\boldsymbol{c}, a) = \frac{n_{\boldsymbol{x}}(\boldsymbol{c}, a)}{n_{\boldsymbol{x}}(\boldsymbol{c})}$ converges to $P_{S}(a|\boldsymbol{c})$.

Theorem

For a constant D, assume that $l(x^{(n)}) > D$. Then, $\widehat{\mathcal{M}}_k(\mathcal{X})|_D \to \mathcal{M}_k|_D$ almost surely as $N \to \infty$.

	0.857	0.052	0.091]	
A =	0.041	0.879	0.08	
	L0.142	0.038	0.82	

- mixture model.

Algorithm	Zip	PAQ8	$\widehat{K} = 1$	$\widehat{K} = 2$	$\widehat{K} = 3$	$\widehat{K} = 4$	$\widehat{K} = 5$
Redundancy (bits/1K symbols)	277.6	19.2	68.8	20.0	2.4	3.2	4.8