Synchronous Transformers for End-to-End Speech Recognition

Zhengkun Tian, Jiangyan Yi, Ye Bai, Jianhua Tao, Shuai Zhang, Zhengqi Wen
National Laboratory of Pattern Recognition, Institute of Automation, CAS
Email: zhengkun.tian@nlpr.ia.ac.cn
Streaming End-to-End ASR

• In order to be truly useful, such end-to-end models must decode speech utterances in a streaming fashion. Streaming ASR can record and recognize almost \textit{synchronously}.
Asynchronous Decoding

For most of attention-based sequence-to-sequence models, the inference process can be divided into two separated stages:

a. Encoding

b. Decoding (Beam Search)
Highlights of Our Work

We proposed a synchronous transformer (Sync-Transformer) model.

- Perform encoding and decoding synchronously.
- Combine the advantages of transformers and transducers in great depth.
- High accuracy and low latency
Model Architecture

- **Encoder**
 - 2 Conv layer with stride 2 (Sub-sampling)
 - 6 blocks
 - Feed Forward Net
 - Multi-Head Attention
 - Layer Norm And Residual Connection

- **Decoder**
 - 6 blocks
 - Feed Forward Net
 - Multi-Head Attention
 - Layer Norm And Residual Connection
 - Shared Embedding and output linear weights
Model Architecture

- Local Multi-Head Self-Attention in Encoder
- Every node in the encoder only focus on its left context and ignore its right contexts completely during calculating self-attention weights.
Model Architecture

• Local Multi-Head Self-Attention in Encoder

There is an overlap between two adjacent chunks to maintain a smooth transition of information between chunks.
Training

Forward Variables $\alpha(m, u)$

m – the m-th of chunk

u – the u-th of labels

$$
\alpha(m, u) = \alpha(m - 1, u) \phi(m, u) + \alpha(m, u - 1)y_u(m, u - 1)
$$

$$
p(y_1:U | x_1:T) = \alpha(M, U + 1) \phi(M, U + 1)
$$
Training

Backward Variables $\beta(m, u)$

m – the m-th of chunk

u – the u-th of labels

$$\beta(m, u) = \beta(m + 1, u)\phi(m, u) + \beta(m, u + 1)y_{u+1}(m, u)$$

$$\beta(M, U + 1) = \phi(M, U + 1)$$
Training

Sum over the probabilities of all alignment paths

\[p(y_{1:T} | x_{1:T}) = \sum_{(m,u):m+u=n} \alpha(m,u) \beta(m,u) \]

Minimize the negative log-loss function

\[\mathcal{L} = -\ln p(y_{1:T} | x_{1:T}) \]
Training

The training process is divided into two steps.

◎ Utilize a trained transformer model to initialize the parameters of Sync-Transformer.

◎ Then apply the forward-backward algorithm to train a Sync-Transformer.
Inference

• Sync-Transformer decoder an utterance chunk by chunk.
• Once a $<\text{blk}>$ is predicted, it will switch to the next chunk and continue decoding.
Dataset

• A public Mandarin speech corpus **AISHELL-1**
• Training Set 150 hours / 120098 utterances
• Development 20 hours / 14326 utterances
• Test set 10 hours / 7176 utterances
Experiments Setup

• Encoder
 • 2 layer conv layer front end (stride 2, channels 256 and kernel size 3)
 • 6 blocks \(d_{\text{model}} 256 / d_{ff} 1024\)
 • Left context length 20 and right context length 0

• Decoder
 • 6 blocks \(d_{\text{model}} 256 / d_{ff} 1024\)
 • Share the weights of embedding and output linear layer
 • 4232 characters as model units (including a \(<\text{blk}>\) and a \(<\text{unk}>\))

• Training And Inference
 • First stage: 60 epochs Second stage: 10 epochs
 • Beam Width: 5
Experiments

• Comparison of different window lengths and overlap lengths

| Table 1. Comparison of different window lengths (CER %). |
|-----------------|---|---|---|---|---|
| W | 5 | 10 | 15 | 20 | 25 |
| Dev | 8.64 | 7.99 | 8.57 | 8.68 | 11.04 |
| Test| 9.73 | 9.06 | 9.51 | 9.76 | 11.71 |

| Table 2. Comparison of different overlap lengths (CER %). |
|-----------------|---|---|---|---|---|
| B | 4 | 3 | 2 | 1 | 0 |
| Dev | 8.60 | 7.91 | 7.99 | 9.53 | 9.61 |
| Test| 9.56 | 8.91 | 9.06 | 10.39 | 10.47 |
Experiments

• Comparison with other end-to-end models

Table 3. Comparisons with other models (CER %).

<table>
<thead>
<tr>
<th>Model</th>
<th>Online</th>
<th>Steps</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAS [20]</td>
<td>No</td>
<td>U</td>
<td>-</td>
<td>10.56</td>
</tr>
<tr>
<td>Transformer</td>
<td>No</td>
<td>U</td>
<td>7.80</td>
<td>8.64</td>
</tr>
<tr>
<td>RNN-T [10]</td>
<td>No</td>
<td>T+U</td>
<td>10.13</td>
<td>11.82</td>
</tr>
<tr>
<td>SA-T [10]</td>
<td>No</td>
<td>T+U</td>
<td>8.30</td>
<td>9.30</td>
</tr>
<tr>
<td>Sync-Transformer</td>
<td>Yes</td>
<td>U+M</td>
<td>7.91</td>
<td>8.91</td>
</tr>
</tbody>
</table>

U is the length of the target sequence.

T is the number of frames.

M is the number of chunks.

$U < U + M \ll T < T + U$
Conclusions

• We proposed a streaming model named synchronous transformer, which combines the advantages of transformers and transducers model in great depth.

• Sync-Transformer can encode and decode synchronously like transducer.

• Sync-Transformer can achieve high accuracy like transformer and low latency.
Thanks

Email: zhengkun.tian@nlpr.ia.ac.cn