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Abstract— 1 The work by Narang and Ortega [1], [2] laid

the foundations for the two-channel critically sampled perfect

reconstruction filter bank for signals defined on undirected

graphs. The basic filter bank proposed is applicable only to

bipartite graphs but using the notion of separable filtering, the

basic filter bank can be applied to any arbitrary undirected

graphs. In this work several new theoretical results are presented.

In particular, the proposed polyphase analysis yields filtering

structures in the downsampled domain that is equivalent to those

before downsampling and thus can be exploited for efficient im-

plementation. These theoretical results also provide new insights

that can be exploited in the design of these systems. These insights

allow us to generalize these filter banks to directed graphs and

to using a variety of graph base matrices, while also providing a

link to the DSPG framework of Sandryhaila and Moura [3], [4].

Experiments show evidence that better non-linear approximation

results may be obtained by a better select of these base matrices.

I. INTRODUCTION

Recently there has been great interest amongst signal pro-

cessing researchers to develop techniques for processing signal

defined on graphs, i.e. graph signal processing (GSP). This is

mainly spurred by the proliferation of applications where data

is defined over domains that are irregular, e.g. social, sensor

and transportation networks. In [5], [6] good overviews of

recent developments and avenues for future work in GSP are

presented. One view of GSP is that it is a merging of graph

theory with concepts and techniques from regular domain

signal processing. Spectral graph theory [7] provides a natural

extension of the notion of frequency and frequency domain

to the spectral domain for undirected graph signals [5]. The

eigenvalues of the Laplacian matrix give the discrete spectral

frequencies with this approach [5]. The DSPG approach of

Sandryhaila and Moura [3], [4] uses the adjacency matrix as

a generalization of the one sample shift (delay) in 1-D signals

and the filtering is based on polynomials of the adjacency

matrix.

Many signal processing systems use some form of transform

to map the data from the original domain to another. In regular

domain signal processing the wavelet transform (and its exten-

sions and generalizations) is perhaps one of the most popular

and commonly used transforms, as it provides a decomposition

that has time and frequency localization properties [8]–[10].

There have been several approaches proposed in the literature
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[1], [2], [11]–[17] to extend and adapt the wavelet transform

for graph signals. Reference [1] provides a comparison of

many of the techniques proposed. For regular domain sig-

nals, wavelet transforms based on the two-channel critically

sampled perfect reconstruction filter banks are perhaps one of

the most popular. Critical sampling allows for efficient non-

redundant representation of the signal. However many graph

transforms are not critically sampled.

Narang and Ortega [1], [2] laid the foundations for a graph

transform that is based on two-channel critically sampled filter

banks. The graph filter banks in [1], [2] can be implemented

efficiently using distributed processing without the need for

any eigendecomposition. The basic filter bank is applicable

only to undirected bipartite graphs. However using the notion

of the separable filter bank, the basic filter bank can be applied

to any arbitrary undirected graph. Other approaches such as

in [14], [15] also provide critical sampling but unlike [1], [2]

do not have an easy frequency interpretation. More recently,

using graph sampling theory, a two-channel critically sampled

system was proposed in [18] but its implementation requires

eigendecomposition, which can have significant complexity.

In [19], a critically sampled system was also proposed. The

analysis bank in [19] can be implemented with distributed

processing but inversion of a potentially large matrix, which

can be computationally costly, is required in the synthesis

bank. Extension to M -channel graph filter banks with critical

sampling was recently proposed in [20], [21]. One of the main

differences between the approach in [21] and those in [1], [2]

is in the downsampling operation. In [1], [2] the downsampling

sets can be arbitrary, and an exact solution can be found for

any bipartite graph. Instead, the approach in [20], [21] requires

downsampling to be closely linked to the graph shift operator,

in order to replicate the behavior of multi-rate systems in

regular domain. Specifically, in a 2-channel filterbank, the two

polyphase terms would be obtained by downsampling on the

same set of nodes, first the original signal and then the shifted

original signal (see [20]), while in this paper the original (or

filtered) signal is downsampled directly on two disjoint sets

of nodes (as in [1], [2]).

The design of bipartite graph filter banks (GFB), which

involves the determination of four polynomial spectral filter

functions, can be found in [1], [2], [22]–[26]. The technique

in [23] was developed using a theoretical framework that

is based on the notion of a polyphase representation and

ladder structures adapted to graph filter banks (GFB). The
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work in [23] however was focussed on the construction of

filters. Here we present new theoretical results that extend

the work in [23]. The main contributions are: i) a new

polyphase framework for the analysis of the GFB, ii) based

on this new framework, a derivation of filtering structures

in the downsampled domain (filtering after downsampling)

that are equivalent to filtering operations in the original graph

(filtering before downsampling), a lead to significantly reduced

implementation complexity, iii) a study of the connections

between the characteristics of the downsampled graph, and

its corresponding filters and signals, and those of the original

graph, filters and signals, which sheds some light on the

relationship between original and downsampled domain, and

could be exploited to design improved multirate systems, and

iv) a generalization of the approaches in [1], [2] to directed

graphs, and other graph matrices, as well as a link to the

DSPG framework of Sandryhaila and Moura [3], [4]. We

provide experimental results to demonstrate that replacing

the symmetric normalized Laplacian as “base matrix” in the

framework proposed by Narang and Ortega [1], [2] by other

base matrices derived from the adjacency but with different

normalizations can lead to better filtering.

An overview of the paper is as follows. A review of the

fundamentals of graph signal processing and bipartite GFB is

presented in Section II. The polyphase analysis is presented in

Section III, where efficient polyphase structures are derived.

Section IV presents results that lead to a spectral interpretation

of the polyphase analysis. Section V explores the relationship

between the vertex and spectral domains. Generalizations are

presented in Section VI where it is shown that the GFB

can also be applied to directed graphs. In Section VII the

application to non-linear approximation of graph signals is

considered and the effect of using different base matrices is

considered. Concluding remarks are found in Section VIII.

II. DEFINITIONS AND PRELIMINARIES

A brief review of graph theory, graph signal processing and

graph filter banks is first presented. We refer the reader to [1],

[2], [5], [16] for more details.

A. Spectral Graph Theory

A graph G = (V,E) is defined by the set of vertices V

and edges E. A graph can have directed or undirected edges.

Initially we will consider only undirected graphs but later some

of the results will be generalized to directed graphs as well.

The number of vertices is denoted as N = |V | and the vertices

are labelled as 1, . . . , N . An edge e ∈ (i, j) ∈ E connects the

two vertices i and j. The adjacency matrix A is the N ×
N symmetric matrix whose element ai,j (i, j = 1, . . . , N )

is positive real and gives the weight of the edge connecting

vertices i and j. If ai,j = 0 there is no edge connecting vertices

i and j. The degree of vertex i is defined as di ≡
∑

j ai,j and

the diagonal matrix D ≡ diag(di). The combinatorial graph

Laplacian matrix is defined as L ≡ D−A and the symmetric

normalized graph Laplacian, with respect to D, is defined as

L ≡ D−1/2LD−1/2 = I−D−1/2AD−1/2

where I is the identity matrix. Since L is a real symmetric

matrix, it can be decomposed as

L =

N
∑

i=1

λiuiu
T
i = UΛUT

where Λ = diag(λi) and U ≡ [u1|u2| · · · |uN ], with λi being

the eigenvalue of L and ui the corresponding eigenvector.

Now UUT = I (orthogonal matrix), i.e. the eigenvectors

u1, · · · ,uN form an orthonormal set. The set of eigenvalues

σ(G) ≡ {λ1 ≤ λ2 · · · ≤ λN} is the spectrum of graph G. The

eigenvalues are bounded in the interval [0,2].

B. Graph Signal Filtering

A signal over a graph G is a function that maps each

vertex i to a numerical value f(i). The graph signal can be

represented as the vector f = [f(1) · · · f(N)]T . The graph

Fourier transform is defined as

f̂(λl) ≡
N
∑

n=1

f(n)ul(n) = fTul

where ul ≡ [ul(1) · · · ul(N)]T (for l = 1, · · · , N ) are

the Laplacian eigenvectors. The equation can be written as

f̂ = UT f where f̂ = [f̂(λ1) · · · f̂(λN )]T is the vector of

spectral components at the graph frequencies. The inverse

graph Fourier transform is therefore f = Uf̂ or in scalar

form f(n) =
∑N

l=1 f̂(λl)ul(n). Filtering in the spectral

domain is defined as f̂out(λl) = h(λl)f̂(λl) where h(λ) is

the spectral filter in the continuous spectral variable λ. The

inverse transform of f̂out(λl) gives the output in the vertex

domain as fout(n) =
∑N

l=1 f̂(λl)h(λl)ul(n). In vector/matrix

form fout = Hf , where H = h(L) ≡
∑N

i=1 h(λi)uiu
T
i =

U diag{h(λi)}UT is the transformation matrix. In general the

knowledge of the eigenvalues/eignevectors of the underlying

graph G is required for implementing the filtering operation.

An eigendecomposition of a large graph is however computa-

tionally expensive. When the spectral filter is a polynomial

function given by h(λ) =
∑K

k=0 bkλ
k, it can be readily

shown (using the identity Lk = U diag{λk
i }U

T ) that the

transformation matrix is given by H =
∑K

k=0 bk L
k. The

eigendecomposition of the Laplacian is therefore not required

for implementing the filter. Only powers of the Laplacian

are required and filtering is equivalent to repeated application

of the Laplacian on the input signal which has much lower

computationally complexity. Another important property of

polynomial filters is localization. A K-hop local neighbour-

hood for vertex i, denoted by N (i,K), is defined as the set

of (other) vertices that are connected to vertex i by no more

than K edges. A filter h(L) is K-hop localized if the output

fout(i) is determined only by input values f(j) in N (i,K).
It can be shown that a degree K polynomial filter is K-hop

localized [5], [16] and can be implemented with distributed

processing.

C. Biorthogonal Graph Filter Banks

The critically sampled two-channel filter bank proposed in

[1], [2] is defined on bipartite graphs. A bipartite graph G =
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(L,H,E) is a graph whose vertices can be partitioned into

two disjoint subsets, i.e. V = L
⋃

H and L
⋂

H = ∅, such

that every edge connects one vertex from L to one vertex

from H . Downsampling of a bipartite graph signal retains

only vertices in L (or H) and discards the other vertices in H

(or L). Upsampling inserts the discarded nodes but replaces

the signal values with zeros. There are 4 spectral filters in the

filter bank: (i) h0(λ) (low-pass analysis), (ii) h1(λ) (high-pass

analysis), (iii) g0(λ) (low-pass synthesis) and (iv) g1(λ) (high-

pass synthesis). The perfect reconstruction (PR) condition can

be given by the following theorem:

Theorem 1: Given any bipartite graph G = (L,H,E)
and any input signal f , the filter bank achieves PR, i.e. the

reconstructed signal fR = f , if and only if for 0 ≤ λ ≤ 2

h0(λ)g0(λ) + h1(λ)g1(λ) = 2 (1)

h0(2− λ)g0(λ)− h1(2− λ)g1(λ) = 0 (2)

The proof of Theorem 1 above can be found in Section III.B

in [1]. The next lemma (from [23]) gives the PR condition

with polynomial filters.

Lemma 1: With polynomial functions for h0(λ), g0(λ),
h1(λ) and g1(λ), conditions (1) and (2) in Theorem 1 are

satisfied if and only if

g0(λ) = h1(2− λ), g1(λ) = h0(2− λ) (3)

h0(λ)h1(2− λ) + h0(2− λ)h1(λ) = 2 (4)

The PR conditions in Lemma 1 can be expressed in alternate

form using the polyphase representation proposed in [23]. To

achieve this the filter functions are expressed as polynomials

of the shifted-frequency variable µ = λ− 1 ∈ [−1, 1]. Define

H0(µ) ≡ h0(µ+ 1), H1(µ) ≡ h1(µ+ 1), G0(µ) ≡ g0(µ+1)
and G0(µ) ≡ g0(µ + 1). Then h0(λ) = H0(λ − 1) =
∑K

k=0 aH0(k)(λ − 1)k, i.e., a polynomial in the shifted-

frequency variable. Now µ = λ− 1 corresponds to

Ã ≡ L− I = −D−1/2AD−1/2 (5)

We shall refer to −Ã as to the normalized adjacency matrix.

A polynomial filter function H(µ) (in the variable µ) has

the corresponding transform matrix given by H(Ã). This

transform matrix H(Ã) is the same as the transform matrix

obtained from the matrix polynomial of the Laplacian, i.e.

H(Ã) = h(L) where H(µ) = h(µ + 1). The filter function

H0(µ) is then partitioned into an even part and an odd part,

which are defined as:

He
0(µ) ≡ 1

2 (H0(µ) +H0(−µ)) (6)

Ho
0 (µ) ≡ 1

2 (H0(µ)−H0(−µ)) (7)

A similar definition applies for the other filters. Now He
0(µ)

and Ho
0 (µ) are polynomials with only even and odd powers,

respectively. They are even and odd functions respectively, i.e.

He
0(µ) = He

0(−µ) and Ho
0 (µ) = −Ho

0 (−µ). The analysis and

synthesis polyphase representation matrices are defined as

Pa(µ) =

[

He
0(µ) Ho

0 (µ)
Ho

1 (µ) He
1(µ)

]

, (8)

Ps(µ) =

[

Ge
0(µ) Go

0(µ)
Go

1(µ) Ge
1(µ)

]

. (9)

Note the different ordering in the first and second rows. The

following symmetry properties of the matrix can be easily

verified:

Property 1:

Pa(µ) +Pa(−µ) = 2 diag(He
0(µ), H

e
1(µ)).

Property 2:

Pa(µ)−Pa(−µ) = 2 Ia diag(Ho
0 (µ), H

o
1 (µ)).

where Ia ≡

[

0 1
1 0

]

is the anti-diagonal unit matrix. The

next Lemma and Corollary are proved in [23].

Lemma 2: Equation (3) in Lemma 1 is satisfied if

Ps(µ) = Ia Pa(−µ) Ia (10)

Equation (4) in Lemma 1 is satisfied if

detPa(µ) = 1 (11)

III. POLYPHASE ANALYSIS AND STRUCTURES

The results in section II-C are mainly pertinent for con-

structing the filter functions. Polyphase analysis deals with

the signals and filters in the downsampled domain. Efficient

structures in the downsampled domain are derived here. The

main results are stated in Theorem 2 and Theorem 3 below.

A. Canonical adjacency and matrix polynomials

For a given bipartite graph G = (L,H,E), without loss

of generality suppose the nodes in subgraph L are labelled

contiguously so that L = {n : n = 1, . . . , |L|}. The comple-

ment set is then H = {n : n = |L| + 1, . . . , |L| + |H|}. The

(negative) normalized adjacency matrix can then be written in

canonical form as

Ã =

[

0|L| A1

A2 0|H|

]

. (12)

The rectangular matrix A1 (size |L| × |H|) represents the

connections from one subgraph to another. For an undirected

graph A2 = AT
1 (size |H| × |L|) but for the development

to follow we will assume that A2 is not neccesarily equal to

AT
1 . Any adjacency matrix of a bipartite graph Ãnc that is

not canonical can be transformed into a canonical form using

permutation matrices [27, p. 85].

The next Lemma provides explicit expressions of powers of

Ã, a result that will be important later on.

Lemma 3: For k = 0, 1, . . .

Ã2k =

[

(A1A2)
k 0|L|×|H|

0|H|×|L| (A2A1)
k

]

, (13)

Ã2k+1 =

[

0|L| A1(A2A1)
k

A2(A1A2)
k 0|H|

]

, (14)

where the zeroth power of a matrix gives the identity matrix

of the same size, and the subscripts (e.g. |L| × |H|) denote

the dimension of the submatrices.
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Proof: Equation (13) will be proven first using induction.

It can be easily verified that

Ã2 =

[

A1A2 0|L|×|H|

0|H|×|L| A2A1

]

.

This is (13) with k = 1. Suppose (13) applies for k − 1, i.e.

Ã2(k−1) =

[

(A1A2)
k−1 0|L|×|H|

0|H|×|L| (A2A1)
k−1

]

.

Then by explicit multiplication of the two matrices above

Ã2k = Ã2Ã2(k−1) =

[

(A1A2)
k 0|L|×|H|

0|H|×|L| (A2A1)
k

]

.

By using induction from k = 1, equation (13) applies for any

k ≥ 1. Explicit multiplication of equations (12) and (13) gives

Ã2k+1 = ÃÃ2k =

[

0|L| A1(A2A1)
k

A2(A1A2)
k 0|H|

]

.

Lemma 3 shows that even and odd powers of Ã result in

block diagonal matrices and block anti-diagonal matrices,

respectively.

Consider the generic polynomial

F (µ) ≡
∑

k≥0

f̂(k)µk

which can represent any of the spectral filters H0, H1 G0 or

G1. The even and odd parts are then given by:

F e(µ) =
∑

k≥0

f̂(2k)µ2k,

F o(µ) =
∑

k≥0

f̂(k + 1)µ2k+1.

The next Lemma shows explicitly the structure of the matrix

polynomial F (Ã) in terms of the even and odd parts. The

result will be used later to derive the polyphase structures.

Lemma 4: The matrix polynomial F (Ã) ≡
∑

k≥0 f̂(k)(Ã)k can be expressed as

F (Ã) = F e(Ã) + F o(Ã)

where

F e(Ã) =

[

F e,u(Ã) 0|L|×|H|

0|H|×|L| F e,l(Ã)

]

(15)

F o(Ã) =

[

0|L| F o,u(Ã)

F o,l(Ã) 0|H|

]

(16)

and the submatrices are defined as

F e,u(Ã) ≡
∑

k≥0

f̂(2k)(A1A2)
k (17)

F e,l(Ã) ≡
∑

k≥0

f̂(2k)(A2A1)
k (18)

F o,u(Ã) ≡
∑

k≥0

f̂(2k + 1)A1(A2A1)
k (19)

F o,l(Ã) ≡
∑

k≥0

f̂(2k + 1)A2(A1A2)
k (20)

and A1 and A2 are submatrices in (12).

Proof: By definition F e(Ã) =
∑

k f̂(2k) (Ã)2k. Using

Lemma 3 for (Ã)2k

F e(Ã) =
∑

k

f̂0(2k)

[

(A1A2)
k 0|L|×|H|

0|H|×|L| (A2A1)
k

]

.

and the result for F e(Ã) follows. By definition F o(Ã) =
∑

k f̂(2k + 1) (Ã)2k+1. Using Lemma 3 for (Ã)2k+1

F o(Ã) =
∑

k

f̂0(2k + 1)

[

0|L| A1(A2A1)
k

A2(A1A2)
k 0|H|

]

.

and the result for F o(Ã) follows.

Note that F e(Ã) is block diagonal whereas F o(Ã) is block

anti-diagonal. Furthermore the submatrices F e,u(Ã) and

F e,l(Ã) are square but the submatrices F o,u(Ã) and F o,l(Ã)
are rectangular in general. The superscripts u and l are used

to denote upper and lower respectively.

B. Analysis Polyphase Structure

The analysis filter bank is shown in Fig. 1. The signals,

e.g. f , are to be treated as column vectors. Signals before

the downsampler are of dimension N = |L| + |H| and

signals after the downsampler are of dimension |L| or |H|.
This is analogous to the full sampling rate and downsampled

rate in 1-D multirate systems. The rectangular blocks, e.g.

H0(Ã) are to be treated as transform matrices and are matrix

polynomials of Ã. Consider now Fig. 2 which shows the

bipartite decomposition of a full rate signal f into two lower

rate signals fL and fH . Assuming the contiguous ordering

(labelling) of the nodes of the bipartite graph as described in

section III-A, the downsampling operation can be expressed

compactly as:

fL = BLf , fH = BHf , (21)

where

BL ≡
[

I|L| 0|L|×|H|

]

, BH ≡
[

0|H|×|L| I|H|

]

(22)

and I|L| (I|H|) is the size |L| (|H|) identity matrix. Concate-

nating the column vectors fL with fH gives f as
[

fL
fH

]

=

[

BLf

BHf

]

=

[

I|L| 0|L|×|H|

0|H|×|L| I|H|

]

f = f

The next theorem formally gives the equivalent downsampled

filtering for the analysis filter bank.

Theorem 2: The filtered and downsampled signals in Fig.

1 are given by

fsub ≡

[

flow
fhigh

]

= TA

[

fL
fH

]

≡ TAf

where fL and fH are defined in (21). The analysis polyphase

transform matrix (size N ×N ) is defined as

TA ≡

[

H
e,u
0 (Ã) H

o,u
0 (Ã)

H
o,l
1 (Ã) H

e,l
1 (Ã)

]

. (23)

The submatrices
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1) H
e,u
0 (Ã) and H

o,u
0 (Ã) are as defined in Lemma 4 but

with F replaced with H0 and f̂(k) replaced with ĥ0(k)
(coefficients of spectral filter H0(µ)).

2) H
e,l
1 (Ã) and H

o,l
1 (Ã) are as defined Lemma 4 but

with F replaced with H1 and f̂(k) replaced with ĥ1(k)
(coefficients of spectral filter H1(µ)).

Proof: With reference to Fig. 1, f0 = H0(Ã)f and flow =
BLf0 using (21). Therefore

flow = BLH0(Ã)f = BL(H
e
0(Ã) +Ho

0 (Ã))f

Using Lemma 4 we have

BLH
e
0(Ã)f =

[

I|L| 0|L|×|H|

]

.

[

H
e,u
0 (Ã) 0|L|×|H|

0|H|×|L| H
e,l
0 (Ã)

] [

fL
fH

]

= H
e,u
0 (Ã)fL

BLH
o
0 (Ã)f =

[

I|L| 0|L|×|H|

]

.

[

0|L| H
o,u
0 (Ã)

H
o,l
0 (Ã) 0|H|

] [

fL
fH

]

= H
o,u
0 (Ã)fH

Adding the two result above gives

flow = H
e,u
0 (Ã)fL +H

o,u
0 (Ã)fH (24)

Using Fig. 1 and similar steps to the derivation for flow, the

high-pass signal is given by

fhigh = H
o,l
1 (Ã)fL +H

e,l
1 (Ã)fH (25)

Comment: For 1-D regular domain multirate systems, the

noble identity allows one to move the filtering operation from

a higher sampling rate to a lower one and vice versa [9],

[10]. The noble identity can be exploited to derive efficient

implementation of 1-D filter bank systems. The result above is

analogous to the 1-D polyphase structure where the filtering is

performed on the downsampled signals, i.e. first downsample,

then filter. The approach by Teke and Vaidyanathan [20], [21]

is to mimic the behaviour of delays in 1-D using the shift

operator. In particular, signals in [20], [21] are downsampled

using a single set of nodes. As an example, in a “lazy”

filterbank, the original signal is sampled on those nodes, then

shifted by multiplying it by the shift operator (the adjacency

matrix) and sampled again in those same nodes [20]. In

contrast, we sample the signal in two disjoint subsets (see

(22)) with no shifts involved, and our approach is applicable

to any bipartite graph.

C. Synthesis Polyphase Structure

The synthesis filter bank is shown in Fig. 3. The signals

are vectors with dimension of either |L|, |H| or |L| + |H|.
The blocks are transform matrices and are matrix polynomial

of Ã. Contiguous ordering (labelling) of the nodes of the

bipartite graph as described in section III-A is assumed. The

upsampling operations can then be described compactly as

(flow)↑βL
=

[

flow
0|H|×1

]

, (fhigh)↑βH
=

[

0|L|×1

fhigh

]

(26)

Note that the reverse of the bipartite decomposition in Fig. 2

is given by

(fL)↑βL
+ (fH)↑βH

=

[

fL
fH

]

= f

The next Lemma gives the equivalent filtering for the synthesis

filter bank.

Lemma 5: The interpolated (upsampled and filtered) signals

in Fig. 3 are given by

g0 =

[

G
e,u
0 (Ã)

G
o,l
0 (Ã)

]

flow, g1 =

[

G
o,u
1 (Ã)

G
e,l
1 (Ã)

]

fhigh (27)

where

1) G
e,u
0 (Ã) and G

o,l
0 (Ã) are as defined in Lemma 4 but

with F replaced with G0 and f̂(k) replaced with ĝ0(k)
(coefficients of spectral filter G0(µ)).

2) G
o,u
1 (Ã) and G

e,l
1 (Ã) are as defined in Lemma 4 but

with F replaced with G1 and f̂(k) replaced with ĝ1(k)
(coefficients of spectral filter G1(µ)).

Proof: With reference to Fig. 3 and using (26)

g0 = G0(Ã)(flow)↑βL
= (Ge

0(Ã) +Go
0(Ã))

[

flow
0|H|×1

]

Using Lemma 4 we have

Ge
0(Ã)

[

flow
0|H|×1

]

=

[

G
e,u
0 (Ã) 0|L|×|H|

0|H|×|L| G
e,l
0 (Ã)

] [

flow
0|H|×1

]

=

[

G
e,u
0 (Ã)flow
0|H|×1

]

Go
0(Ã)

[

flow
0|H|×1

]

=

[

0|L| G
o,u
0 (Ã)

G
o,l
0 (Ã) 0|H|

] [

flow
0|H|×1

]

=

[

0|L|×1

G
o,l
0 (Ã)flow

]

Adding the two expressions above gives the result for g0. With

reference to Fig. 3 and using (26)

g1 = G1(Ã)(fhigh)↑βH
= (Ge

1(Ã) +Go
1(Ã))

[

0|L|×1

fhigh

]

Using similar steps to the derivation for g0, the result for g1

in (27) follows.

The reconstructed signal is fR = g0 + g1. The bipartite

(polyphase) decomposition of fR, analogous to (21), is defined

as

fRL = BLf
R, fRH = BHfR (28)

Concatenating fRL with fRH , which is equivalent to reversing

the decomposition, gives fR i.e.
[

fRL
fRH

]

= (fRL )↑βL
+ (fRH)↑βH

= fR.

The next theorem gives explicit expressions for fRL and fRH .

Theorem 3: The bipartite (polyphase) decomposition com-

ponents of fR as defined in (28) are given by

fR ≡

[

fRL
fRH

]

= TS

[

flow
fhigh

]

= TSfsub
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where the synthesis polyphase transform matrix (size N ×N )

is defined as

TS ≡

[

G
e,u
0 (Ã) G

o,u
1 (Ã)

G
o,l
0 (Ã) G

e,l
1 (Ã)

]

(29)

and the submatrices G
e,u
0 (Ã), etc. are defined in Lemma 5.

Proof: Now fR = (g0 + g1). Using Lemma 5

fR =

[

G
e,u
0 (Ã)

G
o,l
0 (Ã)

]

flow +

[

G
o,u
1 (Ã)

G
e,l
1 (Ã)

]

fhigh

=

[

G
e,u
0 (Ã) G

o,u
1 (Ã)

G
o,l
0 (Ã) G

e,l
1 (Ã)

] [

flow
fhigh

]

Using (28) for fRL

fRL =
[

I|L| 0|L|×|H|

]

[

G
e,u
0 (Ã) G

o,u
1 (Ã)

G
o,l
0 (Ã) G

e,l
1 (Ã)

] [

flow
fhigh

]

=
[

G
e,u
0 (Ã) G

o,u
1 (Ã)

]

[

flow
fhigh

]

fRL = G
e,u
0 (Ã)flow +G

o,u
1 (Ã)fhigh (30)

Using (28) for fRH

fRH =
[

0|H|×|L| I|H|

]

[

G
e,u
0 (Ã) G

o,u
1 (Ã)

G
o,l
0 (Ã) G

e,l
1 (Ã)

] [

flow
fhigh

]

=
[

G
o,l
0 (Ã) G

e,l
1 (Ã)

]

[

flow
fhigh

]

fRH = G
o,l
0 (Ã)flow +G

e,l
1 (Ã)fhigh (31)

To summarize: Theorem 2 gives the analysis polyphase

structure as shown in Fig. 4. Theorem 3 gives the synthesis

polyphase structure as shown in Fig. 5. These results are

built on top of Lemmas 3 and 4 which hold for bipartite

graphs. Implementing the full-rate filter bank in Fig. 1 requires

the multiplication of the two transform matrices H0(Ã) and

H1(Ã) (dimension N×N ) with f (dimension N ). Implement-

ing the polyphase structure in Fig. 4 requires the multiplication

of the transform matrices TA (dimension N × N ) with f .

We therefore have a computational complexity reduction by a

factor of two which is the same as in 1-D systems.

IV. EQUIVALENT SUBGRAPH SIGNALS AND FILTERS

Results are derived in this section that allow a spectral

interpretation of the polyphase analysis of the previous section.

The explicit expressions of the submatrices/subfilters in (23)

and (29) can be obtained by using (17) - (20), e.g. H
e,u
0 (Ã) is

given by (17) with ĥ0(2k) replacing f̂(2k). The subfilters are

functions of Ã but are not simple polynomials of Ã. Define

the following matrices:

Aα ≡ A1A2 Aβ ≡ A2A1

If the original graph (adjacency Ã) is undirected (A2 = AT
1 ),

then Aα ≡ A1A
T
1 and Aβ ≡ AT

1 A1. Note that in this case,

both Aα and Aβ are symmetric but Aα 6= Aβ in general.

The subfilters in (17) - (18) can then be expressed as:

F e,u(Ã) = F̂ e,u(Aα) ≡
∑

k≥0

f̂(2k)(Aα)
k

F e,l(Ã) = F̂ e,l(Aβ) ≡
∑

k≥0

f̂(2k)(Aβ)
k

F o,u(Ã) = A1F̂
o,u(Aβ) ≡ A1

∑

k≥0

f̂(2k + 1)(Aβ)
k

F o,l(Ã) = A2F̂
o,l(Aα) ≡ A2

∑

k≥0

f̂(2k + 1)(Aα)
k

Let Gα and Gβ be subgraphs with adjacency matrix Aα and

Aβ respectively. The vertices of Gα and Gβ are the subsets

L and H respectively (L and H are bipartitions from the

original graph). The subfilters F̂ e,u(Aα) and F̂ o,l(Aα) are

polynomials of Aα and therefore can be viewed as spectral

filters w.r.t. to the subgraph Gα. The subfilters F̂ e,l(Aβ)
and F̂ o,u(Aβ) are polynomials of Aβ and therefore can be

viewed as spectral filters w.r.t. to the subgraph Gβ . The

subfilter F o,u(Ã) (F o,l(Ã)) consists of spectral filtering with

F̂ o,u(Aβ) (F̂ o,l(Aα)) followed by the projection operator A1

(A2). Note that even though the original bipartite graph does

not have any self-loops (zero values along the diagonal of

Ã), the resulting subgraphs Gα and Gβ may have self loops

(non-zero diagonals for Aα and Aβ).

Since we are now considering signals on multiple different

graphs, we introduce a notation that makes it explicit which

graph a signal lives. Thus (f ,−Ã) represents the input signal,

where f is the signal vector and −Ã the adjacency matrix

of the graph. The signals from the bipartite decomposition in

Fig. 2 can therefore be represented as (fL,Aα) and (fH ,Aβ),
i.e. signals on equivalent subgraphs. The polyphase structure

in Fig. 4 has therefore an equivalent structure shown in Fig.

6. The signal (fL,Aα) is filtered with the spectral filters

Ĥe,u(Aα) and Ĥo,l(Aα). The output from Ĥo,l(Aα) is then

applied to the projection operator A2 which maps a signal on

subgraph Gα to a signal on subgraph Gβ . Something similar

occurs for the signal (fH ,Aβ). An equivalent structure to Fig.

5, for the synthesis side, showing the spectral filtering process

and projection operators, can similarly be obtained.

The next Lemma gives the relationship between the eigen-

values/eigenvector of the bipartite original graph (adjacency

−Ã) and the subgraphs (adjacencies Aα and Aβ).

Lemma 6: Let Ãy = µy where µ and y are the eigenvalues

and eigenvector respectively. The eigenvector can be parti-

tioned into y =

[

yT
1

yT
2

]T

, where y1 and y2 are associated

with set of vertices in L and H respectively (bipartition). Then

1) The eigenvalues of Aα are µ2 with eigenvector y1.

2) The eigenvalues of Aβ are µ2 with eigenvector y2

Proof: By definition

Ãy =

[

0|L| A1

A2 0|H|

] [

y1

y2

]

= µ

[

y1

y2

]

Taking each component separately gives

A1y2 = µy1, A2y1 = µy2
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Using these relations, we get

Aαy1 = A1A2y1 = µA1y2 = µ2y1

Aβy2 = A2A1y2 = µA2y1 = µ2y2

If Ã is normalized as in (5), then by definition −Ã1N =
1N , where 1N is the dimension N row vector with unity

elements. Using the partitioned form of Ã in (12), it can

be easily shown that A11H = −1L and A21L = −1H .

Using these results we have Aα1L = A1A21L = 1L and

Aβ1H = A2A11H = 1H , i.e. the adjacency matrices of the

subgraphs are also normalized. Note that there is no negative

sign in the normalization for Aα and Aβ , i.e. they are the

positive version of the adjacency matrix. The corresponding

Laplacians are therefore

Lα = IL −Aα, Lβ = IH −Aβ

Let λ denote the eigenvalue of the original graph Laplacian

L = IH + Ã (from (5)). Then µ = λ−1 (µ eigenvalue of Ã).

Since the eigenvalues of Aα and Aβ are the same and equal

to µ2 by Lemma 6, the eigenvalues of Lα and Lβ are also the

same and are given by:

λα,β = 1− µ2 = 1− (λ− 1)2 = 2λ− λ2

This equation gives the mapping of the spectral frequencies

from the upsampled domain to the downsampled domain.

The next Lemma gives explicit relationships between the

Laplacians in both domains.

Lemma 7: The subgraphs Laplacian Lα and Lβ are related

to the original bipartite graph Laplacian L as follows:

Lα = BL(LQ)2BT
L, Lβ = BH(LQ)2BT

H

where BL and BH are defined in (22) and Q ≡

[

BL

−BH

]

.

Proof: Now L = IN + Ã from (5). Using (12) for Ã

LQ =

[

I|L| A1

A2 I|H|

] [

I|L| 0|L|×|H|

0|H|×|L| −I|H|

]

=

[

I|L| A1

−A2 −I|H|

]

(LQ)2 =

[

I|L| A1

−A2 −I|H|

] [

I|L| A1

−A2 −I|H|

]

=

[

I|L| −A1A2 0|L|×|H|

0|H|×|L| I|H| −A2A1

]

The diagonal blocks of (LQ)2 give Lα and Lβ . These blocks

can be extracted from (LQ)2 by pre-multiplication with BL

(or BH ) and post-multiplication with BT
L (or BT

H ).

Comment: As shown in [1] the bipartite graph filter bank

can be applied to any arbitrary graph using the notion of

separable processing. This would require the decomposition

of an arbitrary graph into a sequence of bipartite graphs.

The decomposition however is not-unique and developing

ways to give a good decomposition is still an open area of

research, see for example [28]. The results above provide an

accurate characterization of transformed signals in terms of the

equivalent subgraphs and can potentially be used to develop

improved multirate decomposition techniques. This is beyond

the scope of this paper and is left for future work.

V. VERTEX AND SPECTRAL RELATIONSHIPS

For a given representation matrix Pa(µ) (dimension 2× 2)

defined in (8), there is a corresponding transform matrix TA

(dimension 2N×2N ) which can be obtained by using Lemma

4 and Theorem 2. The former can be viewed as a spectral

domain description and the later can be viewed as a vertex

domain description, as will be justified next by comparisons

with 1-D systems.

A. Analogy with 1-D systems

The bipartite graph filter bank (GFB) considered in this

work is analogous to the classical 1-D two-channel multirate

filter. In section 3.2 in [29] three types of domains are used for

the analysis/description of the 1-D filter bank: time-domain,

modulation-domain and polyphase domain. In the time-domain

the analysis filter bank is described by the analysis matrix T1D
a

which is a matrix with a block Toeplitz structure (see (3.2.2),

page 109 in [29]). In the polyphase-domain the analysis

filter bank is described by the analysis polyphase matrix

H1D
p (z) which is a 2 × 2 matrix of Laurent-polynomials in

the variable z = ejω (see (3.2.22), page 114 in [29]). The

polyphase-domain can also be considered as a frequency-

domain description as it involves the frequency variable ω. For

the GFB the transform matrix TA is analogous to the analysis

matrix T1D
a . Both TA and T1D

a can be used to transform

the signal by matrix/vector multiplication. The matrix TA

can therefore be considered a vertex domain description as

it allows a vertex domain implementation. The Pa(µ) in GFB

is analogous to H1D
p (z) as both involve frequency variables.

The analogy however are not without differences. The ordering

of the even and odd components in Pa(µ) is different to that

in H1D
p (z). The variable µ = λ − 1 is real-valued but the

variable z is complex-valued. The analogy and comparison are

summarized in Table I. Similar analogies exist for the synthesis

filter bank.

B. Perfect Reconstruction

The analysis in sections III and IV makes no assumption

about any constraint imposed on the spectral filters or the

elements of the representation matrices in (8) and (9). The

perfect reconstruction (PR) condition in terms of the spectral

filters is given by Lemma 1, while the corresponding condition

in terms of the representation matrices is given by Lemma 2.

Equivalent conditions in terms on the transform matrices (23)

and (29) are derived next.

Lemma 8: If the synthesis representation matrix Ps(µ) is

given by (10) in Lemma 2, then the synthesis transform matrix

is given by

TS ≡

[

G
e,u
0 (Ã) G

o,u
1 (Ã)

G
o,l
0 (Ã) G

e,l
1 (Ã)

]

=

[

H
e,u
1 (Ã) −H

o,u
0 (Ã)

−H
o,l
1 (Ã) H

e,l
0 (Ã)

]

(32)
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Proof: Using (8) and (9) in (10) gives the following

relation between the element of the representation matrices
[

Ge
0(µ) Go

0(µ)
Go

1(µ) Ge
1(µ)

]

=

[

He
1(µ) −Ho

1 (µ)
−Ho

0 (µ) He
o (µ)

]

By substituting µ with Ã we obtain 4 matrix equations, e.g.

Ge
0(Ã) = He

1(Ã). The matrices in each equation have the

block-form in either (15) or (16). Taking the appropriate block

will give the required submatrix in (32), e.g. block (1, 1) from

Ge
0(Ã) = He

1(Ã) gives G
e,u
0 (Ã) = H

e,u
1 (Ã).

The next Lemma gives the equivalent PR condition in terms

of the transform matrices.

Lemma 9: If (10) and (11) in Lemma 2 are satisfied then

the transform matrices satisfy

TSTA = IN (33)

Proof: Using Lemma 8 the product TSTA is given

explicitly by

TSTA =

[

H
e,u
1 −H

o,u
0

−H
o,l
1 H

e,l
0

] [

H
e,u
0 H

o,u
0

H
o,l
1 H

e,l
1

]

=

[

H
e,u
1 H

e,u
0 −H

o,u
0 H

o,l
1 H

e,u
1 H

o,u
0 −H

o,u
0 H

e,l
1

H
e,l
0 H

o,l
1 −H

o,l
1 H

e,u
0 H

e,l
0 H

e,l
1 −H

o,l
1 H

o,u
0

]

(34)

where the explicit dependence on Ã is not shown for brevity.

If (11) is satisfied, it is shown in Appendix A that the diagonal-

blocks, e.g. block (1, 1), are equal to the identity matrix

(of appropriate size) and the anti-diagonal-blocks, e.g. block

(2, 1), are equal to the zero matrix (of appropriate size).

Therefore (34) is equal to the identity matrix and the proof

is complete.

Equation (33) shows that TS is the inverse of TA (and vice

versa). However no explicit inversion of TA is required as

long as TS satisfies (32), i.e. the inverse is implicit. The result

in Lemma 9 is analogous to the equivalence relationship in

Theorem 3.7 in [29] (page 122) for 1-D systems and will be

needed to prove the generalizations in section VI.

VI. GENERALIZATIONS

The original formulation of the two-channel graph filter

bank of Narang and Ortega [1], [2] was for undirected graphs.

The spectral filters used are polynomial functions and the

equivalent transformation matrices are matrix polynomials.

We define the term base matrix as the independent matrix

variable in the matrix polynomials. The base matrix used

in [1], [2] is the symmetrically normalized Laplacian L and

allows the spectral folding phenomena in bipartite graphs to

be exploited. As explained in section II-C, an alternate but

equivalent formulation uses the normalized adjacency matrix

Ã defined in (5) as the base matrix. The spectral filters are

then polynomials in the variable µ = λ−1 with the following

associations: µ → Ã and λ → L.

For undirected graphs the matrices L and Ã are symmetric.

If we examine carefully the analysis presented in sections III

and V no symmetry assumption is made about the base matrix

Ã. The only requirement is that the base matrix is of the

block anti-diagonal form shown in (12) which is equivalent

to the underlying graph being bipartite. We refer to any such

base matrix as an admissible matrix. This means that the base

matrix could be

1) the un-normalized adjacency matrix A,

2) a non-symmetrically normalized adjacency matrix, such

as the random-walk matrix D−1A. Other examples are

considered in Section VII.

Furthermore since no assumption of matrix symmetry is

made, the bipartite graph could be directed. This extension /

generalization can be formally stated in the following theorem:

Theorem 4: The analysis filter bank in Fig. 1 and the

synthesis bank in Fig. 3 form a perfect reconstruction (PR)

system, i.e. f = fR if the spectral filters H0(µ), H1(µ), G0(µ)
and G0(µ) are polynomial functions satisfying

G0(µ) = H1(−µ), G1(µ) = H0(−µ) (35)

H0(µ)H1(−µ) +H0(−µ)H1(µ) = 2 (36)

and the base matrix Ã is an admissible matrix, i.e. of the form

in (12).

Proof: Since µ = λ− 1, equations (35) and (36) implies

equations (3) and (4) respectively. Using Lemma 2, equations

(10) and (11) are satisfied. Using Lemma 9, PR is achieved.

The symbol Ã was initially defined as the symmetrically

normalized adjacency matrix in (5). However from here on Ã

is used to denote any matrix of the form in (12). The domain of

the polynomial filters is the disc |µ| ≤ ρ(Ã) where ρ(Ã) is the

spectral radius. If Ã is normalized such that ρ(Ã) = 1 then the

filters are graph independent. Furthermore if the eigenvalues

are real then −1 ≤ µ ≤ 1. e.g. (5).

The DSPG framework of Sandryhaila and Moura [3], [4]

for graph signal processing is based on the polynomial of the

adjacency matrix of a graph which could be undirected or

directed. Theorem 4 shows that the bipartite graph filter bank

of Narang and Ortega [1], [2] can be extended for the DSPG

framework. For an arbitrary (non-bipartite) undirected graph,

Narang and Ortega [1], [2] proposed a decomposition into a

series of bipartite graphs which is not unique. For Theorem

4 to be applicable to arbitrary (non-bipartite) directed graphs,

some form of decomposition needs also to be performed. The

development of techniques for directed graph decomposition

is beyond the scope of this paper and left for future work.

VII. APPLICATION

We consider a simple application where we represent the

same signal with filter banks based on different base matri-

ces, and their respective performance in terms of non linear

approximation. The effect of using different admissible base

matrices is investigated. The base matrix considered in [1],

[2] is the symmetrically normalized adjacency matrix Ã =
AS ≡ D−1/2AD−1/2. Another normalization which leads to

a non-symmetric matrix is Ã = ARW ≡ D−1A, commonly

known as a random walk (RW) matrix. The RW matrix is

row stochastic as the sum of every row is equal to unity,

i.e. ARW1 = 1, where 1 is the all ones column vector.

Using ARW is equivalent to pre-scaling the input signal f

by D1/2 before the analysis filter bank and post-scaling of
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the reconstructed signal f by D−1/2 after the synthesis filter

bank. This scaling prevents DC leakage of the high-pass signal

into the low-pass band if H1(−1) = 0 (zero DC response in

the high-pass filter) and the system is known as a zeroDC

filterbank [2].

In the context of adaptive image filtering, Milanfar [30]

unified various well known filters such as the bilateral and

NLM (Non-Local-Means) filters using a matrix representation.

The matrix, denoted by W, can be intepreted as an adjacency

matrix of correlation weights between pixels. The relation

between the bilateral filter and spectral graph filtering is also

explored in [31]. With these image filters a normalization,

equivalent to post-multiplication with D−1, is usually applied

to ensure the pixels value are within a suitable range. The

equivalent overall filtering matrix D−1W is therefore a RW

matrix but is non-symmetric. The lack of symmetry has

motivated Milanfar [32], [33] to propose a symmetrization

procedure to the non-symmetric matrix. The symmetrization

procedure is known as the Sinkhorn-Knopp (SK) balancing

algorithm [34], [35]. At each step of the SK algorithm, column

normalization followed by row normalization is applied to the

matrix. Provided the original non-symmetric matrix satisfies

some conditions (see [30], [34], [35] for details), the algorithm

converges to a symmetric matrix WDS that is doubly stochas-

tic, i.e. sum of every row or column is unity. Improvement in

performance was observed in [32], [33] when using WDS

instead of D−1W.

More recently however, it was demonstrated in [36] that

even with just one step of the SK algorithm, significant

performance improvement is made when compared to using

D−1W. It was also observed in [36] that applying the full

SK algorithm (that converge to a doubly stochastic matrix)

does not always give the best result. In some cases one or two

step(s) gave the best result and in other cases the improvement

is marginal after a few steps. We now consider using the finite

steps SK algorithm on the adjacency matrix A to give the base

matrix Ã of the spectral filters. The symbol ASK
R is used to

denote the matrix from the R steps SK algorithm. Each step

of the algorithm is given by the equation

ASK
k = D−1

r ASK
k−1D

−1
c for k = 1, . . . , R

where Dc ≡ diag{(ASK
k−1)

T1} and Dr ≡ diag{ASK
k−1D

−1
c 1}.

The algorithm is initialized with the adjacency matrix, i.e

ASK
0 = A. Note that ASK

R in general is non-symmetric but

is row-stochastic (ASK
k 1 = 1) due to the D−1

r normalization.

Therefore the filter bank will still have the zeroDC property

discussed above. Multiplication by D−1
c or D−1

r scales every

element of the matrix ASK
k−1 independently. Elements that are

zero-valued will remain zero-valued and the sparsity of the

matrix is not affected by the SK steps. This also means that

if ASK
0 = A is admissible, i.e. of the form in (12), the zero

submatrix blocks 0|L| and 0|H| will be unaffected by the SK

steps. Therefore ASK
k is admissible for all k.

The graph signal considered is the Minnesota traffic graph

signal from [1], [2] and is shown in Fig. 7. The graph is 3-

colorable and can be decomposed into a series of 2 bipartite

graphs using the Harary algorithm [37]. There are 3 channels

(LL, LH and HH channels) from the decomposition using the

separable filter bank. The graphBior(5,5) filter pair from [2]

is used in the experiments here. In the reconstruction all low-

pass (LL) coefficients and a certain percentage of the largest

magnitude high-pass coefficients are used. The simulations

were performed with the aid of the GraphBior toolbox that

accompanies the work in [2] and the SGWT toolbox that

accompanies the work in [16]. The PSNR values of the

reconstructed signal with different base matrices are shown

in Table II. The result using the ARW is significantly better

than using AS as DC leakage is not present in the former but

present in the latter. Note that since L = AS + I (see (5)), the

result with AS is the same as the result using the Laplacian

based approach in [2]. There is substantial improvement using

ASK
R and the PSNR increases with the number of SK steps R.

However there is a tapering-off in the rate of increase in PSNR

with R. Practically therefore, it may not be worth applying the

full SK algorithm to give a doubly stochastic base matrix.

VIII. CONCLUSION

The polyphase structure in the downsampled domain, which

is computationally efficient, for critically sampled bipartite

graph filter banks was derived in this work. It was shown

that the signals in the downsampled domain are defined

on equivalent subgraphs and the filtering can be defined as

spectral filters with respect to these subgraphs. The results

from the polyphase analysis reveal analogies of the graph

filter banks with 1-D filter banks but some differences also

exist. The theoretical results allowed the generalization of the

filter bank to bipartite directed graphs and filters with more

general base matrices. It was also demonstrated that the use

of alternative base matrices can lead to improvement in non-

linear approximation applications.

Future work can include developing techniques for decom-

posing an arbitrary directed graph into a series of bipartite

directed graphs. Another direction is to develop techniques to

find a good admissible base matrix for a particular situation or

application. This is related to the open issue of ”Other Graph

Matrices” discussed in [5].

APPENDIX

A. Submatrices arising in Lemma 9

We show here that the submatrices in (34) are equal to either

the identity matrix or the zero matrix if (11) is satisfied. The

proof for the two anti-diagonal-blocks (diagonal-blocks) are

similar to each other and only one will be shown.

The following are trivial scalar equations: (i)

He
1(µ)H

o
0 (µ) − Ho

0 (µ)H
e
1(µ) = 0; (ii) He

0(µ)H
o
1 (µ) −

Ho
1 (µ)H

e
0(µ) = 0. Subtituting µ with Ã in the equation

in (i) gives He
1(Ã)Ho

0 (Ã) − Ho
0 (Ã)He

1(Ã) = 0N .

Using the results in Appendix B on this equation and

extracting the (2, 1) block gives the following identity

H
e,u
1 (Ã)Ho,u

0 (Ã)−H
o,u
0 (Ã)He,l

1 (Ã) = 0|L|×|H|.

Equation (11) can be written as either (i) detPa(µ) =
He

1(µ)H
e
0(µ) − Ho

0 (µ)H
o
1 (µ) = 1, or (ii) detPa(µ) =

He
0(µ)H

e
1(µ) − Ho

1 (µ)H
o
0 (µ) = 1. Subtituting µ with Ã in

the equation in (i) gives He
1(Ã)He

0(Ã) − Ho
0 (Ã)Ho

1 (Ã) =
IN . Using the results in Appendix B on this equation
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and extracting the (1, 1) block gives the following identity

H
e,u
1 (Ã)He,u

0 (Ã)−H
o,u
0 (Ã)Ho,l

1 (Ã) = I|L|.

B. Matrix products

Expressions of the matrix products, such as He
0(Ã)He

0(Ã),
in term of the submatrices, such as H

e,u
0 (Ã) or H

e,u
0 (Ã) are

derived here. The matrices have the form as shown in (15) or

(16). Generic symbols for the matrices, such as He
i (Ã), and

submatrices, such as H
e,l
i (Ã), where i = 0, 1, will be used.

By explicit multiplication of matrices of the form shown in

(15) or (16), the following types of products can be obtained:

He
i (Ã)He

j (Ã) =
[

H
e,u
i (Ã)He,u

j (Ã) 0|L|×|H|

0|H|×|L| H
e,l
i (Ã)He,l

j (Ã)

]

He
i (Ã)Ho

j (Ã) =
[

0|L| H
e,u
i (Ã)Ho,u

j (Ã)

H
e,l
i (Ã)Ho,l

j (Ã) 0|H|

]

Ho
i (Ã)He

j (Ã) =
[

0|L| H
o,u
i (Ã)He,l

j (Ã)

H
o,l
i (Ã)He,u

j (Ã) 0|H|

]

Ho
i (Ã)Ho

j (Ã) =
[

H
o,u
i (Ã)Ho,l

j (Ã) 0|L|×|H|

0|H|×|L| H
o,l
i (Ã)Ho,u

j (Ã)

]

for i, j = 0, 1. Note that two of the matrices are block diagonal

and the other two are block anti-diagonal.
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TABLE I

COMPARISON BETWEEN 1-D AND GRAPH FILTER BANKS MATRICES

1-D Graph

Time / Vertex Domain T
1D
a TA

Frequency / Spectral Domain H
1D
p (z) Pa(µ)

Independent Variable z (complex-valued) µ (real-valued)

TABLE II

PSNR OF RECONSTRUCTED SIGNAL USING VARIOUS BASE MATRICES

Base matrix PSNR (dB) using PSNR (dB) using

Ã 4% high-pass 2% high-pass

A
S 14.96 14.10

A
RW 32.10 25.89

A
SK
1

35.06 27.37

A
SK
3

36.89 28.37

A
SK
5

38.10 28.67

A
SK
10

39.42 28.72

A
SK
20

40.39 28.78
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Fig. 1. Analysis filter bank.
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Fig. 2. Bipartite decomposition.
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Fig. 3. Synthesis filter bank.
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Fig. 4. Analysis polyphase structure.
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Fig. 5. Synthesis polyphase structure.
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Fig. 7. Minnesota traffic graph signal.


